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Abstract 

 

Models are used widely within software engineering and have been studied from many 

perspectives. A perspective that has received little attention is the role of modeler intent in 

modeling. Knowing the intent of the modeler supports both model comprehension by providing 

the correct context for interpreting the model and model quality by clearly defining what 

information the model must contain. Furthermore, formal expressions of this intent allow 

automated support for this. Despite the value that the knowledge of modeler intent can provide, 

there are no adequate means in the current state of modeling practice for expressing this 

information. The focus of this thesis is to address this gap by providing mechanisms for 

expressing modeler intent both explicitly and formally. 

 

We approach this problem by recognizing the existence of a role level in modeling where the 

role each model plays defines what information it should contain and how this is related to the 

information in other models.  The specification of these roles is what we refer to as the 

expression of modeler intent. We then present a framework that incorporates four aspects of 

modeler intent at the role level: the existential intent for a model that arises in response to the 
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need for a set of information by stakeholders, the content criteria that express what information 

the model is intended to contain, model relationships that express how models are intended to 

constrain one another and the decomposition criteria that express the intent behind how a model 

is decomposed into a collection of models. A key contribution of this thesis is the specification 

of the macromodeling language as a new modeling language designed for the role level that 

supports the expression of all four aspects of modeler intent. We evaluate these techniques by 

applying them to two real-world modeling examples. 
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Chapter 1  

Introduction 

Modeling has been a central activity in software engineering since its earliest days. 

Models have been used extensively to describe and prescribe systems and software and 

the subsets of the world that are affected by them. They can be analytical or analogue and 

act as a bridge between our mental models and their subject matter [J09]. Analytical 

models provide a way to reason about systems while analogue models allow systems to 

be simulated and observed. In either case, this allows developers to find defects early 

when the cost of fixing such defects is much lower [J00]. Models also provide a way to 

manage the complexity of software development by supporting levels of abstraction that 

discard irrelevant details and allow alternative ways of decomposing problem 

representations. As a result, they are ideal ways to communicate knowledge about a 

system in a way that supports comprehension by a wide variety of stakeholders. Finally, 

the fact that models of software are also “software” means that they have the special 

property that they can be systematically transformed into what they represent [AGM08]. 

This property is the key to the recent explosion of interest in model-driven software 

development [S06]. 
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Modeling has been studied from many perspectives within software engineering research. 

This includes work related to metamodeling [e.g., MBJK90, KH06], formal model 

semantics [e.g., HR04, MLPS97], horizontal and vertical consistency (refinement) [e.g., 

HKR05, LMT09], model transformations [CH06] and model management [e.g., B03, 

SNEC07]. A perspective that has received little attention is the role that modeler 

intentions play in modeling and this is the focus of this thesis. In order to gain a 

preliminary understanding of the concept of modeler intent and its relationship to 

modeling, we consider some perspectives from philosophy and linguistics.  

 

It is common to think of a model as a kind of linguistic artifact and modeler intentions 

play a role in both in its linguistic and artifactual aspects. As something linguistic, a 

model is equivalent to a set of statements in a language [S03, LSS94]. Accordingly, we 

can apply the semiotic triad of syntax, semantics and pragmatics to it. For natural 

language utterances, pragmatics deals with the intentions of the speaker and the effect 

that context has on the meaning of these utterances [SEPb]. At the level of whole texts, 

pragmatics addresses how a text is structured. For example, Rhetorical Structure Theory 

[RST] classifies the ways in which an author may intend different types of relationships 

between pieces of text in order to achieve different communicative effects such as 

elaboration or juxtaposition. Thus, we expect that the modeler’s intentions affect both 

how models should be semantically interpreted and how collections of models are 

structured.  
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As an artifact, a model is an object that is created by some author with the intent that it 

satisfies a particular purpose [Lad97]. The success of the author is measured by how well 

the model fits the author’s intentions [SEPa]. Here we take the author to be the modeler 

and so the modeler intentions are used to define the required content of a model. Thus, 

being a well-formed linguistic entity is not by itself sufficient for being a model – the 

linguistic entity must also have a purpose that the modeler intends. 

 

The central premise of this thesis is that making modeler intentions explicit and formal is 

useful to both modelers and to users of models. It helps modelers to clarify their 

intentions and ensure that the model fits them and it helps users to understand the content 

and interpret the model correctly. Expressing the intentions formally allows some of these 

benefits to be obtained in an automated way using modeling tools. 

 

As an illustrative example, consider the class diagram DTollPrice shown in Figure 1.1. 

This is based on a transportation system example we use throughout this thesis (see 

Appendix E for additional information).  This diagram is syntactically well-formed and 

according to the usual semantics of class diagrams we can interpret it as being equivalent 

to the following set of statements: 

• Class Vehicle has subclasses Car, SUV and Truck. 

• Class TollTicket has subclasses SingleTripTicket and MonthlyTicket. 

• Class Vehicle has attributes weight and numPassengers of type int. 

• Class Truck has an attribute cargo of type Ctype. 
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• Class TollTicket has an authorizes association to class Vehicle and an attribute 

purchasePrice of type real. 

• Class MonthlyTicket has an attribute discount of type real. 

Now consider how this interpretation is affected as we disclose different aspects of the 

intent regarding this model with the following series of statements. 

• (I1) DTollPrice is a (proper) submodel of the design model 

TransportationSystemDesign  

o We now know that this is not a complete model by itself but is part of a 

larger one and so we expect other submodels showing other parts of the 

design. Furthermore, we know that there may be other classes not shown 

here that may be related to these classes. We also know that this model is 

 

Figure 1.1.Transportation system diagram dealing with toll price. 

DTollPrice:CD 

Car SUV 
cargo : Ctype 

SingleTripTicket Monthly Ticket 

Vehicle 

weight : int 

numPassengers : int 

authorizes TollTicket 

purchasePrice: real 

discount: real 

Truck 
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described at the “design level” of detail (vs. implementation level, for 

example). 

• (I1.1) The classes in DTollPrice are aggregated within the class 

TransportationSystem not shown in this diagram. 

o This elaborates (I1) and we can now infer the statement “classes Vehicle 

and TollTicket have aggregation relationships to class 

TransportationSystem” 

• (I2) Diagram DTollPrice shows the parts of a transportation system dealing with 

toll payment 

o This gives us some sense of the purpose of the model and basis for 

assessing the relevance of the content to this purpose.  

• (I2.1) All and only the attributes of vehicles that affect toll price are shown 

o This elaborates (I2) and we can now infer the statement that “weight, 

numPassengers and cargo are the only vehicle attributes that affect toll 

price”  

• (I2.2) All the types of toll tickets are shown 

o This elaborates (I2) and we can now infer the statement that 

“SingleTripTicket and MonthlyTicket are the only types of TollTicket” 

 

From a model user perspective, I1 helps us to understand the broader context of the 

model and its relationship to other model artifacts, I2 helps us to understand the purpose 

of the model and hence the rationale for its content, and I1.1, I2.1 and I2.2 allow us to 

infer additional statements that augment the standard semantics of the model. From a 
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modeler perspective, asserting these statements helps to clarify what information to 

include or exclude from in DTollPrice. For example, I2.1 forces the modeler to think 

about whether there are any other attributes of vehicles that may affect toll price. As the 

transportation system design evolves, these statements provide guidance to other 

modelers that may modify DTollPrice to help them remain conformant to the original 

intentions – or perhaps, to challenge and change the intention if that is appropriate. 

Finally, if some of these statements can be formalized, then conformance checks and 

repairs can be performed in an automated way by modeling tools. 

 

Expressing modeler intentions has a positive impact on model quality and this, in turn, 

can positively affect software quality [M05]. One of the earliest and most influential 

proposals for assessing model quality is based on the semiotic triad discussed above 

[LSS94]. Syntactic quality measures how well the model fits the modeling language and 

the goal is that all statements are syntactically correct. Semantic quality measures the 

relationship to the modeled domain and the goal is that all statements are correct 

(validity) and that all correct and relevant statements are included (completeness). 

Finally, pragmatic quality measures how the consumers interpret the model and the goal 

is accurate comprehension: i.e., that the consumer’s interpretation is what was intended 

by the modeler. Based on this, the disclosure of modeler intentions supports improved 

model quality in two ways. First, it directly improves pragmatic quality by supporting 

comprehension. Second, it provides a way to assess the completeness aspect of semantic 

quality since we assume that the intended content of the model characterizes the set of 

statements that are relevant.   
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Despite the fact that expressing the intentions about models positively affects quality and 

is useful to stakeholders, modeler intentions are seldom made explicit and formal. In this 

thesis we take the position that this information should be given “first class” status and a 

multi-faceted approach is defined to support this stand.  

 

1.1 Scope and structure of the thesis 

In order to motivate the content and structure of the thesis, consider the framework in 

Figure 1.2 showing the different kinds of modeler intent that can arise within a modeling 

context. The entry point into the framework is through the need arising for a model due to 

the information requirements of some stakeholders such as software developers, testers, 

users, business decision makers, etc. For example, assume that the modeler is responding 

to the need of a group of software developers for the UML model TransportationSystem 

representing the detailed design of a transportation control system that the developers 

must build. This generates an initial existential intent on the part of the modeler that 

identified that the model TransportationSystem must be created. At this point, as the 

modeler considers the purpose of the model, they recognize that TransportationSystem is 

related to other models in well defined ways (arrow R). For example, 

TransportationSystem must satisfy the requirements model TransportationSystemReq, it 

must refine the architecture model TransportationSystemArch, etc.  All of these are 

intended relationships that the model must conform to.  
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Before the modeler actually creates TransportationSystem, they must decide what 

information should be in it based on what information they think would satisfy the needs 

of the developers (arrow C). This gives rise to an intention about what the content of 

TransportationSystem should be and we refer to a characterization of this as content 

criteria. The modeler may then recognize that this information should not be created as a 

single monolithic model but must instead be decomposed into multiple related “partial” 

models (arrow D). Doing this involves both the identification of new models (arrow I) 

and the expression of the decompositional structure of the set of partial models (arrow E) 

that we call decomposition criteria. 

 

In this thesis, modeler intent is expressed using a new type of model called a 

macromodel. A macromodel allows a set of models to be represented at a macroscopic 

level of detail (i.e., without looking at the particular content). The different kinds of 

 

 

Figure 1.2. A framework for modeler intent. 
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modeler intent shown in the framework are expressible within a macromodel. This 

consists of: 

• The existential intent concerning models and collections of models 

• The relationships and the hierarchical grouping structure that must hold between 

models in order to satisfy their purpose 

• The content criteria that express the information that a model is required to 

contain in order to satisfy its purpose.  

• The decomposition criteria that expresses the basis on which a model is 

decomposed into smaller models. 

 

In Chapter 2 we analyse the concept of modeler intent in order to define it more clearly, 

distinguish it from other related notions and define the scope of the thesis more precisely. 

This analysis is used in a review of related work in Chapter 3 to assess the adequacy of 

current approaches in modeling research for the problem of expressing modeler intent. 

Chapter 4 introduces our formalism for expressing relationships between models and the 

classification of these into relationship types. Chapter 5 elaborates the approach to 

expressing content criteria about models based on this. In Chapter 6, the macromodel 

language is described and its syntax and formal semantics are defined and in Chapter 7 

the issue of decomposition criteria is explored. Chapter 8 describes two in-depth 

applications of the approach to actual modeling projects in order demonstrate and 

evaluate our methods. Then in Chapter 9, a prototype tool is described that implements a 

key part of the automation benefit of the approach. Finally, in Chapter 10 we draw some 

conclusions and point to future work.  
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Parts of this work have been published previously. The approach to relationship types in 

Chapter 4 and the core of Chapter 6 on macromodeling can be found in [SME08, 

SME09]. The development of content criteria for submodels that comprises most of 

Chapter 5 can be found in [SM09]. In that paper the earlier term “coverage criteria” was 

used for this instead of “content criteria” as we do here. Parts of Chapter 9 can be found 

in [SME09]. 
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Chapter 2  

Preliminaries 

In this chapter our aim is to analyze the notion of modeler intent more closely in order to 

clarify key concepts and distinctions and provide the conceptual groundwork for the 

subsequent chapters. We will use the intent framework introduced in Chapter 1 and 

shown in Figure 1.2 as a structuring guide for the analysis.    

2.1 The general setting 

Modeler intent is a kind of information about models. As such it exists in the 

development world [MBJK90] that consists of artifacts such as models, activities such as 

modeling and actors such as modelers.  

2.1.1 Actors 

We assume that a modeler works in the context of a particular modeling project that 

consists of an evolving set of interrelated models. Note that the modeling project can be 

part of a larger effort such as a software development project, documentation project, etc. 

Furthermore, if a development methodology is being followed, we think of the modeling 

project as being part of an instance of this methodology. We begin by identifying some 

key stakeholder roles relative to a model in the context of a modeling project: 
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• Modeler  

o Definer: The model definer is a modeler who decides that the model must 

exist and defines what information it should contain. 

o Producer: The producer is a modeler who creates the content of the model 

in accordance with the requirements of the definer. 

• Consumer: The consumer uses the model to satisfy their goals. 

 

The modeler role is subdivided into the definer and producer roles to reflect the fact that a 

modeling project may involve many modelers and that the modeler who decides that a 

given model must exist may not be the same one that creates the model. For example, a 

senior designer on a software project may play the definer role for a certain model that a 

junior designer must create as producer. The junior designer may then play the definer 

role with respect to how they wish to subdivide the model into various submodels and 

then play the producer role in creating them. We assume that the modeler’s intentions are 

manifested when they are playing the definer role and that any expression of modeler 

intent is created by a definer. As discussed in the introduction, both the producer and 

consumer may use these expressions of modeler intent to support their activities. 

2.1.2 Modeler’s intentions vs. stakeholder’s intentions 

We distinguish the concept of modeler’s intentions from that of stakeholder’s intentions 

discussed in early requirements engineering. The intentions of a stakeholder regarding a 

system “to be” consist of the goals that these stakeholders have about the system. These 

can be expressed using modeling languages such as i* [YM97]. In the context of 

modeling we might consider the corresponding stakeholders to be the potential 
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consumers of a model. These consumers have goals about how they intend to use the 

models that will be produced and hence this defines the purpose of these models. A 

modeler interprets these goals and from them forms an idea of the information and 

structure a model should have in order to satisfy stakeholder goals. Thus, in this thesis, 

we assume that the consumer’s intentions are their goals for using a model while the 

modeler’s intentions are the result of translating these goals into a specification of what 

information a model should contain and how it should be structured.   

 

Note that when there are multiple modelers, they may disagree about the consumer’s 

intentions – i.e., there may be conflicting modeler intentions for a given model. One of 

the benefits of expressing modeler intent formally is that these kinds of conflicts can be 

detected since inconsistency checking can be formalized. Another benefit is that a formal 

expression of intent brings a level of precision that helps clarify the points of 

disagreement. This is useful even when there is only one modeler since it helps to clarify 

for themselves what they really intend.    

2.1.3 Intent about the subject vs. intent about a model 

Models are typically used to prescribe something or to describe something. We will call 

the thing that the model is about, the subject [J09], and we can take a model to be 

equivalent to some set of statements about the subject [S03]. In a descriptive modeling 

scenario, there is an existing subject that is being described and the content of the model 

can be true or false depending on whether or not it correctly describes the subject. In a 

prescriptive modeling scenario (e.g., software specification), the subject does not (yet) 
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exist and we are concerned with the consistency of the content of the model – i.e., it must 

be the case that a subject that satisfies the model could exist.  

 

If the modeler is creating a prescriptive model of the subject then they are using the 

model to express their intent about the subject. For example, a design model of a piece of 

software expresses how the modeler intends the software to work. However, the modeler 

intent about the subject is different than the modeler intent about a particular model of the 

subject. In the former case, the intent is concerned with the desired properties of the 

subject while in the latter case it is concerned with the desired properties of the model. 

For example, if the subject of the design model RoadRail is a transportation system, then 

the intent that the transportation system supports automated signals at all railway 

crossings is an intent about the subject and this could potentially be expressed within 

RoadRail. On the other hand, the intent that the model RoadRail shows how the road and 

rail components of the transportation system are related is an intent about the model, not 

the transportation system.  

 

In general, we don’t expect the intent about the model to bias the intent about the subject 

that is expressed within the model. The intent about the subject is concerned with what 

sentences about the subject are true or false while the intent about the model is concerned 

with what kinds of sentences the model should express and this should not say whether 

these sentences are true or false. Still, this kind of separation is not always possible. For 

example, simply asserting that there exists a model RoadRail with the intent described 

above already assumes that the transportation system has both road and rail components 
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and this is clearly saying something about the transportation system itself. It turns out that 

the intent about models and the intent about the subjects of these is models are tangled in 

various ways and we will tease these out in later chapters of this thesis. 

2.2 Expressing existential intent – model roles 

2.2.1 Model roles vs. models 

An important distinction that is not often made clear in research on modeling and is 

central to the concerns of this thesis is that of model roles vs. the models that play those 

roles. We define a model role within a modeling project as a reification of the need for a 

model that satisfies a particular purpose while a model is an artifact that can play (or 

realize
1
) one of these roles. Thus, a model role is not merely an attribute of a model – it 

has its own existence independently of the models that play it. The acknowledged 

existence of a model role within a project represents an existential intent on the part of 

the modeler (as definer): an expectation that a model playing this role should exist within 

the project. 

 

In practice, when actors in a modeling project talk about models, they are usually talking 

about model roles rather than the actual artifacts that play those roles. For example, 

consider the following typical sentences: 

1. “Where is the error handling model?” 

2. “Who will create the structural model of the traffic light controller?” 

                                                 

1
 We will use the terms play and realize interchangeably. Thus a model is a realization of a role. 



www.manaraa.com

16 

 

3. “Here is the latest version of the toll ticket purchase flowchart.” 

 

In the three sentences above, the phrases “error handling model”, “structural model of the 

traffic light controller” and “the toll ticket purchase flowchart” all refer to model roles 

rather than models themselves. Only in sentence (3) is an actual model referred to as the 

referent of the word “Here”. The lifetime of a model role is longer than that of the models 

playing the role and can exist even if no model plays the role. Furthermore, different 

models can play a given role at different times although only one can play the role at a 

time. For example, in sentence (2) it is clear that no structural model exists yet so the 

model role precedes the existence of a model playing the role. In sentence (3) the referent 

of “Here” is the model that is playing the role at the time that the sentence was uttered.  

2.2.2 Model level vs. role level 

In the current state of practice, most explicit modeling activity takes place at the model 

level rather than at the role level. That is, modelers spend most of their time expressing 

the content of particular models rather than their intentions about that content. The role 

level is a macroscopic level of abstraction on the model level since model roles identify 

models without being specific about their content.  

 

Abstraction is a powerful mechanism for managing complexity by supporting top-down 

understanding but in order for a level of abstraction to be useful it must provide some 

form of summarization of the details that are omitted [M09]. We will assume that a 

summary is any property that abstracts from the content of the model. Thus, the modeler 

intent at the role level is one such summary and we argue that this summary in particular 
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is a key one for supporting a stakeholder’s comprehension of a collection of interrelated 

models.  

 

To see this, consider the following different possible summaries of diagram DTollPrice in 

Figure 1.1: 

1. DTollPrice contains seven classes 

2. DTollPrice contains some details for classes Vehicle and TollTicket 

3. DTollPrice contains all information related to toll ticket pricing 

4. DTollPrice contains classes Vehicle and its three subclasses and class TollTicket 

and its two subclasses 

 

These are all valid summaries of DTollPrice and give different amounts of information 

about it. However, of these, (3) is distinguished because it defines the role intended to be 

played by the model and expresses the modeler intent. In general, the choice of summary 

used should correspond to the task for which the abstraction will be used. For example, if 

the goal is to efficiently decide which model has more than nine elements, then a 

summary like (1) is most appropriate. What we suggest is that the summary that is most 

appropriate for supporting the task of model comprehension is the one that is drawn from 

the purpose of the model because this explains why it contains the information it 

contains. A key message of this thesis is that explicitly modeling the role level as part of 

normal modeling activity benefits stakeholders by providing this useful level of 

abstraction on the collection of models in a project. 
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2.2.3 Bottom-up vs. top-down modeling 

The typical approach to modeling based on the model level is bottom-up: models are 

created incrementally by adding content to them and new models are introduced as 

needed. During bottom-up modeling, the act of expressing the intent about a model is 

useful because it forces a modeler to clarify what the purpose of the model is and 

provides a way to ensure that the content is consistent with this purpose.  

 

The fact that a model role can precede the existence of a role player means that a definer 

can express existential intent as a way to direct modeling activities. Thus, in addition to 

bottom-up modeling, the existence of the role level creates an opportunity for top-down 

modeling by allowing the required models and their intent to be specified before content 

is created. While bottom-up modeling is more organic, top-down modeling is more 

designed since the “information architecture” of how content is distributed across 

multiple models can be prescribed. This also provides a mechanism for managing the 

modeling process by allowing different model roles to be assigned to different modelers.   

2.2.4 Model roles vs. model types 

The type of a model is defined by its modeling language and this is typically 

characterized by a metamodel, has a notation and has associated tools such as editors. A 

model role is a use of a modeling language in a particular context. Thus, model roles and 

model types are related but distinct concepts.  

 

A given model type can be used for many roles and a given role could be modeled using 

potentially many types; however, the combinations are not arbitrary. For example, a 
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Statechart may be used to play the roles “behaviour of class Car”, “process for 

purchasing a toll ticket” or “behaviour of the traffic network” but it could not be used to 

play the role “organizational structure of toll operators” because Statecharts do not 

provide the appropriate concepts required for this modeling task. On the other hand, the 

role “process for purchasing a toll ticket” could be modeled using a Statechart, Flowchart, 

UML Activity Diagram or UML Sequence Diagram but not using a Class Diagram. 

2.2.5 Role types vs. roles 

We can also distinguish role types from roles. A role type characterizes a class of similar 

roles and can partially specify the modeler intent for its instances. For example, 

DesignModel is a role type that partially defines a purpose and relationships to other role 

types like RequirementsModel and ArchitecturalModel but it may not be specific about 

some details such as the model type and other relationships that should hold. Each 

instance of DesignModel is a particular role such as “the design of the transportation 

system” which has a similar but distinct purpose from the role “the design of the 

accounting system”.  

2.3 Expressing intent about content – role constraints 

2.3.1 Model purpose 

As discussed in the introduction, a model is taken to be a linguistic artifact and so it is a 

collection of information that is constructed to satisfy a purpose. Model purpose is the 

key driver of modeler intent. Within a software development context, Lange [LC05] has 

classified some of the possible purposes a model may have (See Table 2.1). If the context 

is broadened to include entire organizations that produce software, then the possible 
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purposes of models can include such things as support for persuasion (sales & 

marketing), training (human resources) and decision making (marketing & 

management)
2
. 

 

                                                 

2
 Of course, one may come up with “unorthodox” purposes for a model, e.g., to impress my boss, to 

decorate my wall, etc. however we do not consider these types of purposes in this thesis. 

Table 2.1. Lange’s enumeration of kinds of model purpose within software engineering. 

 

 
Modification The model and the system enable easy modification. Possible modifications are 

corrections, i.e. removal of errors, extensions of the system, or adaptive changes 

due to changed requirements. 

Testing The model is used to generate test cases. 

Comprehension The model and the system are easily comprehensible, i.e. the system elements and 

their 

functionality are modelled such that they can be understood correctly in a 

reasonable 

amount of time. 

Communication The model enables efficient communication about the system’s elements, their 

behavior and the design decisions. Communication includes communication during 

the development phase with different stake holders and documentation for 

understanding the system in later phases such as maintenance. 

Analysis The purpose of the model is to explore and analyse the problem domain including 

its key 

concepts and making some early design decisions. 

Prediction The model is used to make predictions about quality attributes of the eventual 

implemented system.These predictions are used to make early and therefore 

cheaper improvements of the architecture and design. 

Implementation The model is used as basis for (manual) implementation of the source code of the 

system. 

CodeGeneration The model is used to automatically generate the source code of the system. Code 

generation can be complete or partial (only a skeleton of the source code is 

generated). 
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Although the possible purposes of a model seem quite diverse, the only thing a model can 

actually provide is a set of information. Thus, we may reduce the question of the model’s 

purpose to that of what information it should provide and by what means – i.e., what the 

requirements for the model are. With software artifacts we can have both functional and 

quality (or, non-functional) requirements. Similarly, with models we can state its content 

requirements (what information it should provide) and its quality requirements (how it 

provides the information).  

 

The content requirements of a model define specifically what information belongs in the 

model and what does not. The quality requirements of a model specify more generic 

properties that the information must satisfy and these can be captured by model quality 

metrics such as complexity, balance, conciseness, precision, flexibility, etc. Model 

quality metrics have received significant research attention [e.g., LC05, M98]. In this 

thesis, we focus exclusively on content requirements. The modeler (as definer) interprets 

the content requirements as a set of constraints that the information in the model must 

satisfy – i.e., as a specification for the model content. Thus, we take this set of constraints 

to represent the modeler intent about the model’s content.  

2.3.2 Kinds of model constraints 

At this point we need to consider more carefully the term “constraint” used in the above 

exposition. The concept of constraint is a very general one and different kinds of 

constraints have different functions within modeling. To help characterize these kinds, 

consider the taxonomy of constraints shown in Figure 2.1.  We describe these as follows: 
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• Type constraints are due to the rules for correct usage of the modeling language 

used by a model independently of the particular purpose for which the model is 

used. These include semantic constraints that ensure that the content is 

semantically interpretable and consistent and syntactic constraints that ensure that 

the model is renderable using a particular notation. 

• Role constraints are due to the intended purpose of the model and thus are usage 

context dependent. From a linguistic point of view, these carry information about 

pragmatics and determine how the same model could be interpreted differently in 

different usage contexts. This is further subdivided: 

o Method-level constraints are role constraints due to the development 

methodology being followed to create the content. These include 

constraints that require the existence of models playing particular roles, 

constraints on the sequence of modeling activities, model dependency 

constraints, etc. 

o Project-level constraints are role constraints due to the modeler’s design 

decisions and interpretations of stakeholder needs within a particular 

project (i.e., in an occurrence of a development method). These include 

constraints that require the existence of models playing particular roles, 

constraints that define what content is relevant to and required by the 

purpose, and constraints that govern the decomposition of a model. 
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For example, assume that we have some UML class diagram DTollTicket from the 

transportation system example and consider the different kinds of constraints on its 

content as shown in Table 2.2. Most of the research on model constraints within software 

engineering has focused on type constraints and associated notions like consistency [e.g., 

LMT09]. To a lesser extent, work on software methods has addressed method-level role 

constraints [e.g., NFK94, SPEM]. The focus of this thesis is on project-level role 

constraints. 

Characteristics of project level role constraints 

A key difference between project-level role constraints and the other two kinds is the 

level of generality of the constraint. Type constraints are common to all models of the 

same type (i.e., same language) and are typically defined as part of the metamodel for the 

model type. Method-level role constraints are common to all models playing the same 

role type in different occurrences of a method (i.e., different projects). If these are 

expressed, they are found as part of the method definition. In contrast to both of these, 

 

 

Figure 2.1. A taxonomy of constraints that apply to models. 

Model Constraints 

Type Constraints Role Constraints 

Method-level 
Constraints 

Project-level 
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project-level role constraints are specific to a particular model role within a particular 

project
3
. This means that we view these role constraints to be part of the modeling project 

rather than outside or above it. Thus, a violation of such a constraint could be addressed 

either by changing the model content or by changing the constraint itself to reflect a 

change in the intent about the content. For example, if constraint (C4) is violated by 

DTollTicket because it contains the class Car and this is not a subclass of TollTicket, then 

a valid response on the part of the definer is to recognize that the intent of DTollTicket 

has evolved and it now should also allow subclasses of Vehicle of which Car is one. 

 

A software method typically identifies the abstract input and output roles for 

development activities (e.g., requirements gathering, design, etc.) as well as the 

constraints between these roles. Since these are defined at the method level scope that 

                                                 

3
 Note that since a metamodel is kind of model, we can also talk about the intent of the modeler who creates 

a metamodel. This is still a project level constraint but for a modeling language design project. In Chapter 

8, we illustrate this by formalizing role constraints for some submodels of the UML metamodel. 

Table 2.2. Examples of different kinds of model constraints. 

 

 
Kind of constraint Constraint on DTollTicket 

Type (C1) DTollTicket can’t contain a class that is a subclass of 

itself. 

Role (method-level) (C2) DTollTicket cannot use multiple inheritance 

(C3) Every class of DTollTicket requires a corresponding 

Statemachine Diagram to show its behaviour. 

Role (project-level) (C4) DTollTicket only contains only the subclasses and 

details of class TollTicket. 
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spans multiple projects we could consider them to be expressing the intent of the 

development organization rather than the intent of modelers. As such, the method level 

can only be used to express a limited amount detail regarding these roles. For example, 

the Rational Unified Process (RUP) [K00] identifies the existence of an “elaboration 

phase architecture model” but in a particular project this would typically consist of 

multiple partial models (or diagrams) to address different concerns, different stakeholder 

views, different modeling languages, different decompositions, etc. Each of these specific 

models in the elaboration phase has distinct modeler intentions associated with them and 

these cannot be expressed at the method level.  

2.3.3 Usage of role constraints 

The role level constrains (via role constraints) the possible project configurations at the 

model level to those that conform to the modeler’s intentions. This can be utilized to 

support modeling in various ways including:  

• Conformance checking: model defects can be identified by checking for 

conformance with the role constraints.   

• Extension-to-conformance: when model roles exist for which there is no 

corresponding model, or when models are incomplete, the role constraints limit 

the possible content for this missing information. Extension to conformance is the 

process of inferring missing content by extending the incomplete models 

according to the constraints. 

• Change propagation: when a change in a model causes role constraints with 

related models to be violated then a repair action may require the related models 
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to be changed. These changes may then instigate changes in other models, and so 

on. Thus, role constraints between models can drive change propagation.  

 

When role constraints are formalized, these supports can be built into modeling tools and 

automated. A key objective of this thesis is to provide formal expressions of modeler 

intent in order to enable this. 

 

2.4 Expressing intent about relationships 

The purpose of a model may require that its content constrain the content of other models 

or be constrained by the content of other models. We refer to a constraint that is intended 

to hold between particular roles as an intended model relationship. Specifically, when 

such a constraint is intended to hold between certain roles then it means that the possible 

combinations of models that can play these roles are restricted because only certain 

combinations satisfy the constraint.  

 

There are different kinds of relationships one might express between roles but in this 

thesis we limit ourselves to ones that express intent about the content of the models that 

play the roles. To illustrate, consider the following three sentences concerning model 

roles R1 and R2: 

1. easierToPlayThan(R1, R2) 

2. createdBefore(R1, R2) 

3. refines(R1, R2) 
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Sentence (1) asserts that role R1 is easier to play than R2. Assume that we interpret this 

relationship as saying that any model that can play R1 (i.e., satisfies its role constraints) 

can also play R2 but not vice versa. Sentence (2) says that in the project, role R1 must be 

filled (i.e., its existential intent must be satisfied) before R2 is filled. Finally, sentence (3) 

says that at any given point in time in the project, the model that plays R1 must refine the 

model that plays R2.  

 

Of these three cases, (1) does not express an intended relationship between models since 

it either holds or doesn’t hold regardless of the particular models that play R1 and R2. 

Sentences (2) and (3) do express intent about models since they may or may not be 

satisfied by the models that play the roles; however, only sentence (3) expresses intent 

about the relationship between the content of the models that play the roles. Sentence (2) 

is not an intent about content but rather expresses a temporal constraint on the order in 

which roles get filled. Thus, of these, we only study case (3) in this thesis since our focus 

is on modeler intent about model content. 

2.4.1 Mappings 

In order to express a model relationship it is usually required that we assume the 

existence of a mapping between the elements of the models involved. A mapping, like a 

model, is an artifact that must occur in the project and we think of it as playing the role 

represented by the intended model relationship. For example, to say that the design model 

role TransportationSystem must refine TransportationSystemArch corresponds to the 

following intentions: 
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• There is an existential intent that a mapping (call it SysArchMap) exists in the 

project that maps the elements of the TransportationSystem to those of 

TransportationSystemArch that they refine, and, 

• There is a constraint that SysArchMap must satisfy that ensures that this mapping 

is a valid refinement. 

2.4.2 Relationship types 

The fact that expressing modeler intent requires that role constraints be specified for each 

role means that this adds significant effort to the modeling activity. The use of role types 

that package sets of role constraints can help alleviate this. In a similar way, relationship 

types allow sets of constraints that are commonly expressed between roles to be packaged 

and reused.  Furthermore, relationship types provide a level of abstraction on the 

constraints expressed at the role level. For example, UMLrefines is a relationship type 

that can hold between two UML models and it encapsulates a set of constraints that must 

hold between these models. Furthermore, it expresses the fact that one model refines the 

other and this carries a different meaning for the stakeholder than another relationship 

type between UML models that says that one model is a submodel of the other. Thus, 

relationship types are both an effort reduction mechanism and an abstraction mechanism 

and are practical necessities for expressing modeler intent. 

2.5 Expressing intent about model decomposition 

Until this point in our analysis, we have only considered modeler intent with respect to 

individual models or between particular models participating in a relationship. Another 

common situation is that the modeler decides that a model that is required (i.e., for which 
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there is a model role) should be decomposed into a collection of interrelated models 

rather than being created as a single model. There are many reasons to do this. For 

example, in order to manage complexity, the model may be decomposed into smaller 

parts and into different levels of abstraction. A model may be decomposed because it is 

not renderable as-is and it must be split into diagrams that have well defined notations. 

This is the case with the UML – it has no single notation for the entire modeling language 

and so a UML model must always be decomposed into diagrams in order to be rendered. 

Another reason to decompose a model is to support some task – e.g., assigning the parts 

to different teams.  

 

Thus, like a model, every collection representing a decomposition has a purpose.  The 

constraints that characterize the resulting modeler intent about such a collection have 

three facets: 

• The collection decomposes a model which must itself have a well defined purpose 

– i.e., it decomposes a model role. 

• The collection must conform to the constraints imposed by the particular purpose 

of the decomposition of this model role. 

• The model role must be decomposed according to a particular method, or 

decomposition criterion, that yields a collection of model roles as the constituents 

of the decomposition. 

 

To understand decomposition criteria, first note that we have argued that no model exists 

without a purpose and so this must also be the case for the models that comprise the 
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decomposition. It is the modeler’s responsibility to define the purpose of each model 

within the decomposition and this gives rise to a model role and a corresponding 

existential intent for each constituent model.  

 

A second consideration is that the purpose of the decomposition often underdetermines 

the decomposition since there may be many possible decompositions that can satisfy this 

purpose. Thus, the modeler’s intentions regarding a decomposition are driven partly by 

the purpose of the decomposition and partly by their own design decisions on how to 

achieve this purpose.  For example, assume that we have the model role VehicleTypes in 

the transportation system design. The purpose of this model is to show all the types of 

vehicles that are used in the transportation system. Assume that the modeler (as definer) 

decides that this model is too complex and must be decomposed. Consider the following 

two possible decompositions: 

• D1 = {LightVehicleTypes, MidrangeVehicleTypes, HeavyVehicleTypes} 

• D2 = {PassengerVehicleTypes, CommercialVehicleTypes, ServiceVehicleTypes} 

 

D1 represents a decomposition of VehicleTypes on the basis of vehicle weight while D2 

is a decomposition on the basis of vehicle function. Both may satisfy the purpose of 

managing complexity and both define the purpose for each constituent model but each 

has a different basis for the decomposition. Thus the basis for the decomposition is also 

part of the modeler intent expressed as part of the decomposition criteria for the 

collection. 
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Earlier we made the distinction between model roles and models pointing out that model 

roles have an independent existence from models. We now extend this observation to 

collections and define collection roles. Specifically, a collection role is a collection of 

model roles with a collective purpose. Although we don’t preclude the possibility that 

other kinds of collection roles may be possible, in this thesis, our focus is on collection 

roles that are decompositions of model roles. 
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Chapter 3  

Related Work 

We begin this review of related work by noting that while there is some work relating to 

various types of intention within software engineering, the specific issue of expressing 

modeler intent has not been a significant focus of academic research (as far as the author 

can determine). As a result, we first briefly review some non-model related work on 

intention and then for the remainder of the review we assess the ways in which different 

areas of existing modeling practice and research are inadequate as mechanisms for 

expressing modeler intent. To help guide the review, we refer to Table 3.1 which lists the 

Table 3.1. Key requirements of an approach for expressing modeler intent. 

 

Requirement 

Must be able to distinguish model role, model and model type 

Must be able to attach role constraints to and between model roles and be able to 

assess these against sets of models playing the roles. 

Role constraints must be formalizable in order to support automation. 

Must be able to define relationship types that package sets of constraints. 

Must be able to express collections of models and relationships at the role 

(macroscopic) level of abstraction. 

Must be able to express hierarchical structured role collections. 

When a collection represents a decomposition of model, must be able to express the 

intent about how a model is decomposed. 
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set of requirements that any method or formalism used to express modeler intent must 

satisfy. This is distilled from the analysis in Chapter 2. We order the review roughly from 

the most relevant to least relevant and group them under the following categories: model 

metadata, method engineering, aspect-oriented modeling, model management and 

traceability. 

 

3.1 Non-model related work on intention 

In [MMW02], Mens et. al. proposes the notion of intentional source-code views to help 

with software maintenance. The idea is to declaratively define views on source code that 

extract certain subsets of code related to a particular interest or concern. They are 

considered to be intentional because the view definition defines the intent of the view. 

The benefit is that it eases code comprehension and analysis and allows required 

constraints to be enforced within the code by defining relationships between the views. 

Apart from being about code rather than models, this differs from our focus in that these 

views are not a part of the primary artifact (in this case, the code) but represent additional 

supporting artifacts that aid with code maintenance. In contrast, our concern is with the 

intent regarding the primary artifact produced by the modeler. Nevertheless, this work 

has similarity to the approach we take to expressing content criteria in Chapter 5. 

 

The work of Yu and Mylopoulos on using the i* language to model the intentional 

attributes of agents (e.g., goals, commitments, etc.) and their interrelationships [YM97] 

has significant applications to software engineering.  In Section 2.1.2 we discussed this 

work and pointed out that it was more appropriate for describing the model consumer’s 
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intentions rather than the modeler’s intentions.  We assume that the goal of the modeler is 

always to produce a model that satisfies the goals of consumer and so their intent is best 

expressed as a translation of consumer goals into role constraints on the model content. 

Thus, while i* provides a non-formal way to model the various and open-ended 

intentional states of the consumer, our focus is on creating formal expressions of 

constraints on the model that operationalize these. 

 

The intent specifications of Leveson [L00] are an attempt to make specifications more 

effective for human use by structuring them according to principles from systems theory, 

cognitive psychology and human-computer interaction. For example, an intent 

specification for software contains five levels of increasing detail in the intent (i.e., why) 

dimension: system purpose, system principles, black box behaviour, design 

representation and code (physical representation). While this work is distant from our 

concerns in this thesis, the fact that it pays attention to the human factors aspects of 

specifications is relevant to modeler intent. In particular, the model consumer’s 

effectiveness in comprehending a model or collection of models is affected by how 

models are presented and the expression of modeler intent. We have discussed some 

ways in which modeler intent affects comprehension in the introduction and Chapter 2 

and this is elaborated further in subsequent chapters.  

 

Intentional Software is the work of Simonyi et. al. [SCC06] and represents an approach to 

programming that raises the level of abstraction from programming languages to the 

language in which domain experts express their ideas. The result is that software more 
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closely resembles what the domain expert intends rather than some encoding of it by 

programmers. This relates to the focus of this thesis in the sense that we assume that 

modeler intent is a translation from the consumer’s intent into a formal language 

expressing role constraints. Applying the intentional software philosophy here would 

suggest that a model consumer ought to be able to express their model requirements 

directly using concepts from their domains of expertise. Although this is an interesting 

idea, it is outside the scope of the current thesis and we do not explore it further.  

3.2 Model metadata 

Within a software development project, models are typically treated as a type of 

document and are managed within a file system or source control system (e.g., 

Subversion [SubV]) along with their associated metadata. The role that a model plays and 

the associated modeler intent that defines this role appears to be a kind of model 

metadata. However, as we discussed in Chapter 2, a model role has an existence that is 

independent of and could precede the existence of models that play it. Thus, it does not 

quite fit the criteria of being metadata – i.e., we don’t typically allow metadata values to 

exist without the object that they describe. Nevertheless, we consider how well existing 

types of metadata can be used to express modeler intent.  

 

The National Information Standards Organization (NISO) identifies three main types of 

metadata for information resources [GR04]: 

• Descriptive metadata describes a resource for purposes such as discovery and 

identification. It can include elements such as title, abstract, author, and 

keywords. 
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• Structural metadata indicates how compound objects are put together, for 

example, how pages are ordered to form chapters. 

• Administrative metadata provides information to help manage a resource, such as 

when and how it was created, file type and other technical information, and who 

can access it. 

 

Descriptive metadata is a key mechanism for expressing modeler intent. The Dublin Core 

standard [DC] is widely adopted as a reference model for descriptive metadata used in 

resource descriptions. Table 3.2 excerpts the subset of metadata elements that could be 

used to express aspects of modeler intent about content. The descriptive metadata that is 

actually associated with a model varies according to management system used. File and 

source control systems typically support only Title (i.e., the model name) and possibly, 

Description. Note that important information concerning the model role such as 

relationships to other models (Relation, Source) and information concerning aboutness 

(Coverage, Subject) is typically either missing or embedded in the model name. 

 

The Dublin Core standard also contains a Language metadata element to identify the 

language of the resource. In the context of models, this is a reference to the model type of 

a model.  As discussed in Chapter 2, the model type is related to model purpose in that it 

limits the possible purposes a model may have but does not specify purpose. Structural 

metadata is also an important aspect of modeler intent. Since we normally consider 

models to be monolithic instances of their metamodels, we assume that structural 
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metadata applies only to collections of interrelated models. In this case, the expression of 

modeler’s intent describes how the collection is structured.  

 

The Dublin Core standard also contains a Language metadata element to identify the 

language of the resource. In the context of models, this is a reference to the model type of 

a model.  As discussed in Chapter 2, the model type is related to model purpose in that it 

limits the possible purposes a model may have but does not specify purpose. Structural 

metadata is also an important aspect of modeler intent. Since we normally consider 

models to be monolithic instances of their metamodels, we assume that structural 

metadata applies only to collections of interrelated models. In this case, the expression of 

modeler’s intent describes how the collection is structured.  

 

The position taken in this thesis is that not only is the descriptive and structural metadata 

required for expressing modeler intent, but that this is inadequate unless these are 

Table 3.2. The subset of Dublin Core metadata elements relevant to modeler intent. 

 

 

Metadata element Definition 

Title A name given to the resource. 

Coverage The spatial or temporal topic of the resource, the spatial applicability of 

the resource, or the jurisdiction under which the resource is relevant. 

Description An account of the resource. 

Relation A related resource. 

Source A related resource from which the described resource is derived. 

Subject The topic of the resource. 
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formalized. Unlike the content of a model, which is structured according to its metamodel 

and is subject to formal constraints and potentially, formal semantics, the content of the 

metadata are typically expressed in natural language and have neither structure nor 

formal semantics. The lack of structure prevents the automated enforcement of 

consistency in how modeler intent is expressed (e.g., varying naming standards). The lack 

of formality implies that there is no automated way to verify that the model content 

correctly corresponds to the modeler’s intent about that content. This impacts model 

quality because stakeholders use this metadata to obtain information about model content 

at a high level of abstraction and if this is misunderstood or is incorrect then it negatively 

impacts the efficacy of model access activities (e.g., search) and model comprehension.  

3.3 Method engineering 

One of the earliest drivers of software engineering research was the desire to model and 

automate the software development process and the construction of the artifacts produced 

by it. As discussed in Chapter 2, software development methods identify specific roles 

played by models in a development project, thus it is relevant for our review. Telos 

[MBJK90] was an influential early approach for capturing information about the 

development process and defined a rich approach to metamodeling; however, Telos did 

not formalize the notion of collections of distinct interrelated models. By the mid 1990’s 

a number of approaches had emerged that encompassed multiple model types and their 

interrelationships in the context of method engineering – the integration of different 

modeling languages with guidance in order to define new software development 

processes. A key contribution here out of the Requirements Engineering community is 

the ViewPoints framework [NKF94] which is the earliest approach we will review and 
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the most closely aligned with goal of expressing modeler intent. More recently, the focus 

of these efforts have shifted toward the use of modeling frameworks that allow 

specialized development methods to be defined using Domain Specific Modeling 

Languages (DSML). Here the idea is to have a “metatool” in the sense that it allows a 

modeling environment for particular sets of DSML’s to be defined in terms of their 

metamodels. We briefly review four significant efforts in this direction: the Eclipse 

Graphical Modeling Framework (GMF) [GMF], the Generic Modeling Environment 

(GME) [BCR05], MetaEdit+ [MEdit] and Microsoft’s Software Factories [GS04]. Finally 

we consider the Software Process Engineering Metamodel (SPEM) [SPEM] - an initiative 

of the Object Management Group (OMG). Here the focus is on providing a high level 

definition of a method without defining the details of the artifacts involved. 

3.3.1 ViewPoints 

The ViewPoints framework [NKF94] was an influential early approach to relating 

heterogeneous collections of models in a metamodel language independent way. We 

examine this approach in greater detail since of all the approaches reviewed it most 

directly concerns itself with expressing modeler intent. The motivating idea is that 

developer’s viewpoints of systems are typically partial, heterogeneous and decentralized 

and hence there is a need to express the relationships between viewpoints in order to 

support integration. Within the framework, each ViewPoint has an owner and consists 

five parts: 

• Style – representation scheme used to express the ViewPoint 

• Domain – part of the world that the ViewPoint is representing 

• Specification – the statements in the representation scheme describing the domain 
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• Work Plan – how and when the specification can be changed 

• Work Record – describes the current state of the specification 

 

Thus, a ViewPoint is an “envelope” that contains a model (Specification) and other 

metadata relevant to the development process. The semantics of a ViewPoint are limited 

to a statement of the Domain to which it applies. Although the ViewPoints framework 

does not use the terminology of metamodels, their elements are presented in the form 

given by Style defining the model element types and the Work Plan containing the well-

formedness constraints. Nevertheless, no particular form of metamodel is mandated. The 

Work Plan also has other functions - it consists of the following: 

• Assembly Actions – the actual primitive "edit" operations provided by a tool used 

to construct a specification in the given style.  

• In-ViewPoint Rules – the well-formedness constraints. 

• Inter-ViewPoint Rules – a set of rules that check the consistency between different 

related ViewPoints. 

 

Thus, the relationships between ViewPoints are expressed as Inter-ViewPoint Rules and 

for a given source ViewPoint VPS of a given type, this can take two forms: 

{psS} ⇒  ∃VPD(t,d){ps2}         (existence relationship) 

∀VPD(t,d). {psS R VPD:psD}   (agreement relationship) 

The existence relationship says that if VPS has a particular partial specification psS, there 

must exist a destination VPD of template type t and domain d. The agreement 

relationship says that the relation R must hold between the specified partial specifications 

within VPS and all the destination ViewPoints of template type t and domain d. These 

forms could be combined when appropriate.  
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A ViewPoint template is a way to characterize a type of ViewPoint and has only the Style 

and Work Plan slots. Thus, it extracts a metamodel along with its relationships to other 

metamodels. A development method can be defined as a collection of related ViewPoint 

templates.  The Work Plan is used to automate the linkages between ViewPoints and thus 

provide the dynamics of a development method. Inter-ViewPoint Rules can be used in 

Check Mode to check whether the expressed relation holds and therefore check 

consistency. When the relation expressed is actually a function, it can also be used in 

Transfer Mode to enforce the relationship by generating the target ViewPoint (and/or 

some of its specification) from the source ViewPoint. Thus, in this mode, it acts as a 

ViewPoint transformation.  For example, the creation of a class in a class diagram may 

cause the creation of a corresponding empty state machine diagram via an existence rule 

and then agreement rules may be used to partially populate it.  

 

Another major thrust of the ViewPoints research was to determine how to deal with cases 

when Inter-ViewPoint rules fail – i.e., the case of ViewPoint inconsistency and what 

support could be provided to manage and resolve inconsistencies. Easterbrook et. al. 

explore this issue and conclude that support should take the form of offering the modeler 

a set of predefined resolution actions from which they can select and apply [EFKN92]. 

 

A ViewPoint is similar to model role in that it carries metadata about a model including 

constraints to other models. However, the ViewPoints framework uses this for managing 

decentralized development rather than for characterizing model purpose. Of all the 
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approaches reviewed, the ViewPoints framework is the only one that provides a 

mechanism for expressing constraints at the project level rather than only at the method 

level. As a result it is capable of expressing role constraints and modelers in a distributed 

environment can use this to express how they intend their model to be related to other 

models. In addition, these can be expressed at the method level between ViewPoint 

templates to support reuse. Despite this, role constraints are not clearly distinguished 

from type constraints and thus there is no systematic approach to managing the 

differences between violations to these kinds of constraints. 

 

A key weakness of the ViewPoint approach is that it only allows constraints to be 

expressed within ViewPoints and does not identify relationships as first class entities with 

their own type structure. In addition, it does not provide a mechanism for creating 

hierarchical collections of models or for the expression of the modeler intent concerning 

these. Finally, it does not take a sufficiently formal approach to the problem. Perhaps this 

is because, in order to support the goal of heterogeneity, no specific language is mandated 

for expressing the In-ViewPoint and Inter-ViewPoint rules; however, in more recent work 

[NKF03], the authors admit that it is very difficult do meaningful reasoning or analysis if 

a common language is not used for expressing relationships; thus, formal languages like 

first order logic are suggested. 

3.3.2 Modeling frameworks 

GMF, GME, MetaEdit+ and Software Factories all allow the use of metamodels for 

defining model types and provide a specific metamodeling language for this purpose. 

Constraints can be expressed using Object Constraint Language (OCL) [OCL] in the case 
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of GMF and GME while  MetaEdit+ and Software Factories provide their own 

proprietary constraint language. Although  there is no concept of model role and 

constraints are expressed only as part of the metamodel, the orientation toward DSML’s 

means that type constraints begin to act like role constraints. The idea here is to define 

model types that are highly specialized for particular roles and therefore the constraints 

can encode details that are specific to these roles.  

 

For example, rather than using a general purpose model type like a Statechart to describe 

the behaviour of digital watch KX25, a DigitalWatchDiagram could be used that 

provides a special notation for describing the different watch modes, the different display 

configurations, etc.  A semantic constraint from the digital watch domain may specify 

that any change operation to an “hour” counter must be followed by a change operation to 

a “minute” counter. This type constraint may be equivalent to a role constraint used to 

express a part of the intent of using a Statechart for modeling digital watch behaviour. 

The drawback of this approach is that it leads to a proliferation of similar model types. 

Furthermore, it still only supports role constraints at the method level and not at the 

project level. 

 

GME and MetaEdit+ have built-in support for a fixed set of model relationship types. For 

example, both of these have an “expand” type relationship that allows an element in one 

model to expand to other models that provide details of the element. Both GME and 

Software Factories allow the definition of transformations between different model types. 

In fact, Software Factories further classifies transformations as Specialization, 
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Elaboration, Derivation, Refactoring, etc. and thus provides some direct support for 

expressing intent at the macroscopic level. However, none of these approaches provide 

general support for expressing non-transformation model relationships or their types. In 

addition, there is no special support for identifying hierarchical collections of related 

models apart from the implicit hierarchy formed by expanding elements to models within 

GME and MetaEdit+.  

 

Of the four approaches, only Software Factories provides a mechanism for defining a 

model collection type that separates the model types from their relationship types. The 

Software Factory Schema consists of a set of model types and transformations that relate 

them. The other approaches place all model types together as part of one large metamodel 

in which model types can be related by sharing element types or by having references 

between their element types. 

 

In general, a key weakness in all of these approaches is that they don’t distinguish 

between models and model roles. As a result, within a particular project, these 

approaches only provide support for the model level and miss the macroscopic 

abstraction that a role level would provide. Limited macroscopic capability is available 

through collapse/expand of models into a single model “nodes” but this is a model 

navigation aid rather than a formal level of specification. 

3.3.3 Standard Process Engineering Metamodel (SPEM) 

The SPEM process modeling approach aims to characterize a software development 

process using a model that describes how development activities lead to the creation of 



www.manaraa.com

45 

 

different related artifacts (such as models). The metamodel includes the concept of a 

work product – the artifacts that act as inputs and outputs of tasks that comprise a 

development method. The work product as defined here is similar to what we call an role 

type – it represents an artifact that has a well defined purpose within the development 

method and is created and consumed by certain tasks. For example a “Create High-Level 

Design” task may consume the “Requirements” work product and produce the “High-

Level Design” work product. The details of the structure and lifecycle of a work product 

can be expressed in a work product definition. Additionally, work product relationships 

can be expressed to show process dependencies between work products. 

 

With the notion of work product, SPEM effectively captures the distinction between role 

type and model type; however, it is still limited to use at the method level rather than at 

the project level. Furthermore, although work product relationships can be used to 

express relationships between role types, these are limited to process sequencing 

constraints rather than constraints on the content of models playing roles.   

3.4 Aspect oriented modeling  

Aspect Oriented Modeling (AOM) has a close relationship to the notion of modeler 

intent. Here the idea is to provide a means for separately maintaining and developing 

aspects - subsets of the information in a model relating to particular concerns such as 

security or customization - and then allowing these to be woven together to produce the 

complete model when necessary. A concern is related to an aspect similarly to the way a 

purpose is related to a model role. In this sense, AOM seems to capture an essential part 

of what we mean by modeler intent. A wide variety of approaches for AOM have been 
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proposed [SSR06] and thus we focus our review at the level of key concepts rather than 

specific approaches.  

 

AOM has emerged out of Aspect Oriented Programming (AOP) and has taken similar 

approaches. The seminal work on aspect orientation comes from researchers at Xerox 

PARC who proposed the concept of AOP [KLMM97]; however, another highly 

influential strand of aspect research is known as multi-dimensional separation of concerns 

(MDSOC) [TOH99]. The first approach is called asymmetric and is based on the 

principle that a model can be factored into a base model and a number of aspects that 

contain fragments of concern-specific content called advice. An aspect weaver is 

program that is then responsible for merging the aspect content with the base content at 

the appropriate places called join points as specified by pointcuts in the aspect. The 

second approach is called symmetric and provides a general weaving mechanism that can 

intelligently merge a set of aspects to form a complete model. Of these two approaches, 

the advice/join point approach has emerged as the dominant one. 

 

As discussed above, a concern is related to an aspect similarly to the way a purpose is 

related to a model role. For example, the aspect of a model that deals with the concern of 

security could represent a model role with the purpose of “showing the security related 

information.” However, although the spirit is similar, the objectives are quite different. 

The motivation of AOM is to provide techniques for separating content relating to 

different concerns in a manageable way in order to facilitate their subsequent 

recombination into a single model. Thus, AOM is fundamentally a model maintenance 
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technique. In contrast, our goal is to articulate the intent of models in order to improve 

model comprehension, quality and to support automation.  

 

These differences in objectives lead to important differences in the details. Not every 

model role corresponds to an aspect because an aspect always represents a subset of the 

information in a model but a model role need not represent a subset of a model. 

Relationships are supported between aspects (symmetric AOM) or between the aspect 

and the base (asymmetric AOM) but these are restricted to mappings that support the 

weaving process – the relationships do not carry semantic content.  

 

Consider also that an aspect is neither really a model nor a representation of a model role 

– it is actually a set of model fragments annotated with the information required to weave 

it correctly with other aspects. In a sense, the role constraints (weaving information) are 

mixed in with the model content (model fragments). This is reasonable because AOM 

focuses on expressing aspects, not on expressing concerns. An aspect does not try to 

characterize what information should be in the aspect and what shouldn’t. Thus, there is 

no strong incentive to clearly separate model roles from models and formally express the 

purpose of the model. In contrast, we are primarily interested in expressing concerns (i.e., 

purpose). 

3.5 Model management 

The field of model management  deals with generic modeling frameworks that use an 

algebraic approach for raising the level of abstraction in modeling. These provide generic 

operators that can be used to manipulate models and their relationships (here called a 
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“mapping”) in order to solve various modeling problems. The notion of model 

management was first proposed by Bernstein [B03] as an approach to address database 

metadata management problems such as schema integration and instance translation. 

Since then, it has been extended to apply to modeling problems in software engineering 

as well. For example, in [BCE06], the authors define a set of operators that are useful in 

software engineering. It is relevant to our concerns because of this focus on a 

macroscopic level of abstraction of models and their relationships. We briefly describe 

five model management frameworks and then assess them collectively in terms of their 

applicability for expressing modeler intent. 

 

Sergey Melnik developed the Rondo system that realized Bernstein’s vision [Mel04]. In 

Rondo, models (i.e., schemas) are represented as directed labelled graphs that contain 

both the model and metamodel elements. A mapping between two models is called a 

morphism and is simply a binary relation between the nodes of the models. Rondo defines 

a small set of primitive operators such as Domain(map) that returns the domain model of 

a morphism, Compose(map, map) which composes morphisms, etc. These are then used 

to construct more complex operators using scripts.  

 

In another approach, Diskin [D05] describes a complete formal framework for generic 

model management based on Category Theory. The category theoretic notion of a sketch 

is used as a “universal” syntax for models. A sketch is a directed labelled graph with 

some additional annotations representing constraints (called “graph predicates”). The 

kind of mapping used here does not just utilize the explicit information in a model but 
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also the “implicit” information that could be derived from the model – thus, this can be 

used to help relate models without changing the net information content. Since these 

mappings are formally defined and form categories, they allow certain generic model 

manipulation operators (e.g., merge, diff, etc.) to be defined as standard category 

theoretic constructions. A useful category theoretic technique here is the “diagram” that 

allow collections of models and mappings to be expressed visually as a directed graph. 

Category theoretic approaches have also been applied elsewhere to define specific 

operators. For example, Sabetzadeh and Easterbrook define viewpoint merging operators 

[SE05]. 

  

The MoMENT framework of Boronat, Carsi and Ramos [BCR05] is a software model 

management infrastructure based on the algebraic specification.  It is positioned as an 

approach to MDE and borrows both from Bernstein & Melnik’s work by implementing 

their model management operators and from MDA (Model Driven Architecture) [MDA] 

by implementing QVT [QVT05] and OCL. At the high-level, metamodels are expressed 

using Ecore and mappings are expressed as QVT mappings. At the low level, metamodels 

are translated to algebraic specifications expressed in the Maude language and models are 

translated to terms in the algebra specified by the metamodel. QVT mapping are also 

translated to algebraic specifications.  

 

The Epsilon software model management framework of Kolovos, Paige and Pollack 

[KPP06] is integrated with the Eclipse platform and consists of an evolving set of task-

specific languages with supporting tools to help implement model management operators. 
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The motivating principle is that each language captures the patterns required for 

efficiently implementing a particular type of model management operation. For example, 

the merging language EML is a rule-based language with a matching phase that 

establishes correspondences between models being merged and a merging phase for 

combining these elements into the merged model. Epsilon provides support for two types 

of mappings. “Links” (mappings) between models can be expressed by using an 

intermediate model whose metamodel  imports the metamodels of the mapped models. 

Another way to define mappings specifically between metamodels is to use the Epsilon 

Transformation Language (ETL). A mapping consists of a set of rules for transforming 

instances of the source metamodels into instances of the target metamodels. 

 

The focus of the Atlas Model Management Architecture (AMMA) [BJRV05] is to 

facilitate large-scale MDE by providing a set of tools intended to support “global model 

management.” Metamodels are defined using a variant on the Ecore metametamodel. 

Mappings can be established between metamodels using the Atlas Transformation 

Language (ATL) to define model transformations. Mappings between models can be 

expressed using a Weaving Model. Each weaving model is an instance of a weaving 

metamodel that extends the core weaving metamodel provided by AMMA.  A 

MegaModel is a special kind of model whose elements are references to resources used in 

an MDE environment such as models, metamodels, transformations, editors, etc. The 

intent is to use megamodels in a variety of ways from facilitating the integration of 

different MDE environments to providing an interface for invocation of tools (e.g., 

transformations) on models. 
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As is evident from the above, the focus of model management is on model manipulation 

rather than on model presentation. As such, it does not directly fit our scenario for 

expressing modeler intent. Among all the frameworks, AMMA is the one that comes 

closest to meeting our requirements for expressing modeler intent. All of the frameworks 

allow new types of transformations to be defined but only AMMA and Epsilon allow the 

definition of multiple non-transformation relationship types - the others rely on a single 

type of generic mapping to relate models. AMMA and Diskin’s framework allow for 

representing models and their relationships at the macroscopic level using MegaModels 

and Diagrams, respectively, so in a sense they can express information at the role level 

rather than just at the model level; however, the role constraints expressible are limited to 

the available types of relationships. Diagrams can only be used for flat collections but 

MegaModels are extensible to arbitrarily structured collections since they have their own 

user-definable metamodel.  

3.6 Traceability 

 The work on model traceability originally emerged within requirements engineering 

research out of the need to draw connections between software requirements and the 

artifacts that need to satisfy the requirements. Since that time the scope has broadened 

considerably. In an overview on model traceability [ANR06], the authors state 

“Traceability relationships help stakeholders understand the many associations and 

dependencies that exist among software artifacts created during a software development 

project.” Standard relationship types have been proposed for relating the elements of 
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artifacts. For example [RJ01] suggests types like depends on, justifies, validates, 

describes, etc.  

 

Although both traceability information and expressions of modeler intent are useful for 

comprehending the relationships between artifacts, the motivation and results are quite 

different. Traceability relationships are expressed at the model level between the 

individual elements of related models. This allows stakeholders to trace elements in one 

model to related elements in other models. In contrast, modeler intent is expressed at the 

role level as constraints that the models that play related roles must satisfy. Traceability 

information shows “what is” while modeler intent shows “what must be.” Finally, 

modeler intent includes intended constraints on individual models (i.e., unary 

relationships) as well as the intended structure of collections of models. Thus, modeler 

intent has a wider scope than traceability relationships. These differences suggest that 

traceability information and expressions of modeler intent are complementary rather than 

competing approaches for supporting the comprehension of collections related models. 

 

3.7 Summary 

In this chapter we have reviewed the work in software engineering that could be 

considered to be related to expressing modeler intent. Our main finding is that there is no 

existing work that directly addresses this issue. Nevertheless, although it is not their 

primary objective, a number of approaches stand out as being partially a “fit” to the 

problem of expressing modeler intent. We summarize these as follows: 
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• Model metadata standards [GR04],[DC]. Modeler intent is often expressed 

informally within model metadata such as names and descriptions. This approach 

is inadequate for our purposes because it lacks formality and underlying principles 

that define the basis for correctness or completeness. Furthermore, there is an 

ontological difference between metadata and model roles: the existence of model 

metadata depends on the existence of a model but a model role can precede the 

existence of any model playing it. 

• ViewPoints framework [NFK94]. ViewPoints are like model roles in that they 

“wrap” a model with additional information including constraints with other 

ViewPoints. Despite this similarity, ViewPoints are for managing decentralized 

development rather than for characterizing model purpose. Furthermore they have 

no notion of relationship types, hierarchy, decomposition or special handling of 

role constraints. 

• Software Process Engineering Metamodel [SPEM]. SPEM allows model roles to 

be defined as part of a method definition along with process sequencing 

constraints on the roles. Unfortunately, it does not support role constraints on 

content and this is required for  defining modeler intent. Furthermore, roles can 

only be defined at the method level and not the project level. 

• Atlas Model Management Architecture [BJRV05]. This modeling infrastructure 

supports the definition of relationship types and has a special type of model called 

a MegaModel that can be used to express configurations of models with 

associated metadata. Although it does not have special support for concepts such 

as decomposition, hierarchy and role constraints, the generic metamodel-driven 
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nature of it suggests that it could be customized to support this. Despite this, the 

focus of MegaModels is on integrating modeling environments and so it is 

descriptive, expressing “what it is” in contrast to modeler intent which says “what 

must be.”  

 

We now turn to the description of our approach to expressing modeler intent. We begin 

with an exposition of how model and relationship types can be formally defined. 
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Chapter 4  

Models, Relationships and 

Relationship Types 

In Chapter 2 we distinguished the model type from the model role saying that the model type 

was primarily responsible for the syntactic and semantic aspects of a model while the model 

role concerned the pragmatic aspects. Furthermore, we argued that model relationships express 

role constraints between model roles and that classification of model relationships into 

relationship types provides a way to abstract and reuse role constraints. In this chapter we focus 

on model types, relationships and relationship types and formalize our use of these notions. The 

main contributions are as follows: 

• We define an approach for defining relationship types using metamodels but we do so in 

a metamodeling language independent way. 

• We characterize semantic and syntactic properties of relationship types that are of 

relevant to the expressions of modeler intent described in subsequent chapters.  

• We propose a taxonomy of abstract relationship types and define some of these 

formally. In particular the submodelOf relationship type is elaborated in detail. 
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4.1 Notational conventions 

We define the notational conventions that will be used in this chapter and for the remainder of 

this thesis. Names of model role constants will be given in mixed case beginning with an upper 

case letter. For example, DTollPrice, TransportationSystem, M, M1, M1, etc. all represent model 

roles. Names of model constants will be as model roles but underlined. This allows us to 

indicate a model as well as the role it plays. Thus, the model DTollPrice plays the role 

DTollPrice. When we wish to show multiple models that can play the same role (but at different 

times), we will use superscripts as in DTollPrice
1
, DTollPrice

2
, …. The names of variables 

representing model roles or models will follow the same conventions as for constants except 

that they begin with a lower case letter. Thus, base, m, m1, m1 all represent variables that take 

model roles as values. Correspondingly, base, m, m1, m1 are model variables.  

 

Names of model types are strings of upper case letters such as CD, SD, UML, etc. In order to 

avoid confusion with model roles, these will be indicated explicitly to be types when it is not 

clear from the context of usage. Models can be typed and this is indicated using the prefix “: T” 

where T is a type name. Examples:  DTollPrice:CD, M1:UML, etc. When the typing convention 

is used with a model role it indicates the type of model that should play the role. Thus,  

DTollPrice:CD is a model role constrained to be played by a model of type CD. 

4.2 Models 

A distinction is often made between the abstract and the concrete syntax of a model, where the 

latter consists of the actual shapes, lines, characters, etc. from which a model is constructed 

while the former abstracts away from these and instead just expresses a model in terms of the 
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different types of symbols needed. For example, the concrete syntax of a UML class diagram 

includes boxes and lines while the abstract syntax talks about class symbols and association 

symbols. Although the concrete syntax is an important aspect of a model and its effectiveness as 

a language [G98], in this thesis, we will assume that models are characterized in terms of their 

abstract syntax only. Thus, the structure of a model will consist of a set of abstract symbols and 

abstract relations between them. 

4.2.1 Metamodels and model types 

A metamodel is commonly used to define a class of models with similar characteristics – i.e., a 

model type. If MM is a metamodel, then we will denote the model type it defines as [[MM]]. For 

example, we may have the metamodel SD where [[SD]] is the set of all sequence diagrams. 

Note that the same model type could be defined by alternative metamodels. For example, if we 

use the OMG metamodeling language MOF [MOF06] and the Eclipse metamodeling language 

Ecore [EMF], we may have SD:MOF ≠ SD:Ecore but [[SD:MOF]] = [[SD:Ecore]] = [[SD]]. 

Furthermore, not every model type may be expressible in a given metamodeling language. For 

example, if Model is the model type consisting of all models, it is not hard to show that there is 

no MOF metamodel MM:MOF such that [[MM:MOF]] = Model
4
. If a model type is definable 

using a metamodel we will say it is concrete, otherwise it is abstract. 

 

If M is a particular sequence diagram, then it is an instance of the model type [[SD]] but we will 

extend this idea to its metamodel(s) and also say that M is an instance of SD. That is, a model is 

                                                 

4
 Say MM:MOF defines n model element types. Since Model contains all models, we can always find one that has 

n+1 element types and hence MM:MOF can’t be the metamodel and be finite. 
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considered both to be an instance of its model type and of any metamodel that specifies the 

model type. Following usual conventions for typing we will write this as M:SD.  

4.2.2 Metamodeling language 

In this thesis, rather than using a practice-oriented metamodeling language such as MOF or 

Ecore, we have chosen to use order-sorted first order logic with transitive closure
5
 (henceforth 

referred to as FO+) as the metamodeling formalism. There are a number of reasons for this. 

First, variants on first order logic are widely known and have comparable expressive power to 

the other metamodeling approaches. Second, it has a textual representation and this is more 

convenient when discussing formal issues. Finally, general theoretical concepts, such as logical 

consequence, are well understood in this context.  

 

Using FO+ we can define the abstract syntax of a model type as a pair 〈Σ, Ψ〉 where Σ is called 

the signature and defines the types of model elements and how they can be related, while Ψ is a 

set of constraints
6
 that define the well-formedness rules (i.e., type constraints) for models. Thus, 

a metamodel 〈Σ, Ψ〉 is a presentation of an FO+ theory and each finite model (in the model 

theoretic sense) of this theory will be considered to be a model that is an instance of the 

metamodel. Note that not all FO+ theories have finite models but since a metamodel is only 

useful if it admits finite models we will consider it to be inconsistent if it has none. Thus, the 

metamodel consisting of a single sort S and a function f:S→S with the constraint that S is non-

                                                 

5
 For a more detailed description of order sorted logic please see [GM92]. 

6
 Although we are talking about logical theories we will use the term “constraints” rather than “axiom” because it is 

more in keeping with the concerns of the thesis. 



www.manaraa.com

59 

 

empty and f is injective but not surjective, is a consistent FO+ theory but an inconsistent 

metamodel because it has infinite models but no finite ones.  

 

For example, we can define the abstract syntax of (simplified) UML class diagrams in as 

follows
7
.  

 

    CD =  

    sorts  class, assoc, attr, operation  

    func   startClass: assoc → class  

               endClass: assoc → class  

               attrClass: attr → class  

               opClass: operation → class  

    pred   subClassOf: class × class  

    constraints  

              // a class cannot be a subclass of itself  

              ∀c:class · ¬TC(subClassOf(c, c))  

   

 

The signature ΣCD consists of the triple 〈sortsCD, funcCD, predCD〉 where sortsCD is the set of 

element types that can occur in a model while funcCD is the set of functions and predCD is the set 

of predicates used to relate the elements. We will say ΣT1 ⊆ ΣT to mean that sortsT1 ⊆ sortsT and 

predT1 ⊆ predT. The constraints section describes ΨCD. Note that the quantifier ∃! means “there 

exists one and only one” and the operator TC takes a predicate and produces its transitive 

closure.  

                                                 

7
 We are using the style of algebraic specification here. 
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For simple cases we can also show a metamodel signature diagrammatically as in Figure 4.1. 

The nodes represent sorts, edges like “ ” denote directed binary relations and edges like  

“ ” denote functions with one argument.  

 

Figure 4.2 shows a class diagram based on the transportation system example both using its 

concrete syntax and its abstract syntax as an instance of CD (shown as a UML object diagram). 

 

 

 

Figure 4.1. A graphical expression of the signature for CD. 

  Attribute 

  Operation 

Class 
attrClass 

OpClass 

   Association 

startClass 

endClass 

subClassOf 



www.manaraa.com

61 

 

 

 

 

 

Figure 4.2. A class diagram and its abstract syntax as an instance of CD. 

 

MonthlyTicketSingle Trip Ticket

Vehicle TollTicket
purchaseDate : Date

authorizes

Monthly Ticket:class 

Single Trip Ticket class 

authorizes:association 

TollTicket:class 

:subClassOf 

:subClassOf 

:startClass 

purchaseDate:attribute 

:attrClass 

Vehicle:class 
:endClass 

MTollTicket:CD 
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4.2.3 Formalization 

We briefly review the formalization of FO+ (see [GM92] for more details). A signature Σ is a 

tuple 〈S, F, P, ≤, αF, αP〉 which is defined as: 

• A set of sort symbols S = {S1, S2, … Sk} and ≤  ⊆ S × S giving the order relation over 

sorts. 

• A set of function symbols F = {f1, f2, … fm} and an arity function αF:F → S* giving, for 

each function, the result sort followed by the list of argument sorts. 

• A set of predicate symbols P = {p1, p2, … pn} and an arity function αP:P → S* giving, 

for each predicate, the list of argument sorts. 

 

Here, S* denotes a (possibly empty) list of sorts. A function with no arguments is a constant of 

the type given by the result sort. We define the following “helper” definitions. Let  #f = |αF(f )| -

1  - i.e., it is the number of arguments of function f. Also, αF(f)[i+1] is the ith argument sort of f  

and αF(f)[1] is the result sort. Similarly, we define #p = |αP(p)|  and αP(p)[i] for predicates. 

Finally, we define Sen(Σ) to be the usual set of first order sentences (plus TC) over the signature 

Σ. Thus, for a metamodel 〈Σ, Ψ〉, we have that Ψ ⊆ Sen(Σ).  

 

In order to define the semantics of a metamodel
8
 we first recall the standard notion of a first 

order interpretation. An interpretation τ of Σ is an assignment that maps  

• Each sort symbol s to a set [[s]]τ, such that if Si ≤ Sj then [[Si]]τ ⊆ [[Sj]]τ 

                                                 

8
 This should not to be confused with the semantics of the models described by the metamodel. 
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• Each predicate symbol p with αP(p) = 〈S1, S2, … Sn〉 to a relation [[p]]τ ⊆ [[S1]]τ × [[S2]]τ 

× … × [[Sn]]τ  

• Each function symbol  f  with αf(f) = 〈S, S1, S2, … Sn〉 to a function [[f]]τ:[[S1]]τ × [[S2]]τ × 

… × [[Sn]]τ → [[S]]τ 

 

Let Mod(Σ) denote the set of all interpretations of Σ and define the relation � ⊆ Sen(Σ) × 

Mod(Σ) to be the standard satisfaction relation for order sorted first order logic with transitive 

closure. Thus, for sentence ϕ ∈ Sen(Σ), τ � ϕ means that τ satisfies ϕ (i.e., ϕ holds true in τ). 

For a metamodel 〈Σ, Ψ〉, define Mod(Σ, Ψ) to be the set of interpretations that satisfy all the 

sentences in Ψ. Since we are only interested in models that have a finite number of symbols, we 

can define the specified model type [[〈Σ, Ψ〉]] ⊆ Mod(Σ, Ψ) to be the subset of these 

interpretations that have finite sets interpreting the sorts.  

4.2.4 Constructed model types 

Some abstract model types can be concretized in a generic way by defining a type constructor – 

we call these constructed model types. A simple but useful constructed model type is Set[T] that 

produces model types consisting of a single sort T and that have sets of T elements as models. 

This constructor concretizes the abstract model type Set consisting of sets of elements of the 

same type. The definition is: 

   Set[T] =   

        sort T  
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For example Set[Class] is the model type consisting of sets of Class elements, Set[Usecase] is 

the model type consisting of sets of Usecase elements, etc. A useful variant on Set[T] is One[T] 

that defines model types having singleton T sets as models. The definition is: 

   One[T] =   

        sort T  

        constraints  

      // there is exactly one element   

      ∀x1, x2:T · x1 = x2 

      ∃x:T 

 

 

We will see in subsequent chapters that One[T] is useful because it provides a way to lift an 

element type to the model level and hence allows it to participate in model relationships.  

4.2.5 Metamodel morphisms and reducts 

In Section 4.3, our goal will be to define model relationship types in terms of metamodels. In 

order to do this we require a way to show how metamodels can be related and what this means 

for the model types they specify. For this, we draw on a basic concept from theory of 

Institutions within algebraic specification [GB92]. The idea here is that since both the sentences 

Sen(Σ) and interpretations Mod(Σ) are completely determined by the signature Σ, if we map one 

signature into another, this will induce corresponding mappings between their sentences and 

interpretations as well. Furthermore, when these mappings preserve the satisfaction relation 

then it effectively shows how to map one logical theory into another in a sound way. Since we 

are using logical theories to express metamodels and their interpretations to express models, this 

means that it shows how to map metamodels and the model types they specify.  
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We first define the signature mapping as a signature morphism. Given signatures Σ1 and Σ2, a 

signature morphism h:Σ1→Σ2 is a mapping from the sorts, functions and predicates of one 

signature to those of the other such that the subsort relation and arity is preserved. Formally, h 

consists of functions 〈hS:S1→S2, hF:F1→F2, hP:P1→P2〉 such that the following conditions hold: 

1. ∀Si, Sj ∈ S1. Si ≤1 Sj ⇒ hS(Si) ≤2 hS(Sj) 

2. ∀f ∈ F1. #f = #hF(f ) ∧ ∀i ∈ {1, …, #f +1}. αF2(hF(f ))[i] = hS(αF1(f)[i])  

3. ∀p∈ P1. #p = #hP(p ) ∧ ∀i ∈ {1, …, #p}. αP2(hP(p))[i] = hS(αP1(p)[i]) 

Intuitively, a signature morphism h:Σ1→Σ2 is a mapping that shows how to “rename” elements 

of Σ1 into (a subset of) elements of Σ2. We can use this to define a natural translation function 

Sen(h):Sen(Σ1)→Sen(Σ2) for sentences that replace the sort, function and predicate symbols in 

each sentence by their image under h.  

 

Given metamodels 〈Σ1, Ψ1〉 and 〈Σ2, Ψ2〉, a metamodel morphism h: 〈Σ1, Ψ1〉→〈Σ2, Ψ2〉 consists of 

a signature morphism hΣ:Σ1→Σ2 such that Ψ2 � Sen(hΣ)(Ψ1). Intuitively, this means that the 

axioms of 〈Σ1, Ψ1〉 follow logically from the axioms of 〈Σ2, Ψ2〉 after the signature renaming 

defined by hΣ.   

 

In the same way that hΣ induces the sentence translation function Sen(hΣ):Sen(Σ1)→Sen(Σ2) it 

also induces the reduct function Μod(hΣ):Mod(Σ2, Ψ2)→Mod(Σ1, Ψ1) that uses hΣ  to transform 
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each model of 〈Σ2, Ψ2〉 into a corresponding model of 〈Σ1, Ψ1〉. For each τ2  ∈ Mod(Σ2, Ψ2), we 

define τ1 = Μod(hΣ)(τ2) as follows:  

1. ∀S ∈ S1, [[S]]τ1 = [[hΣ(S)]]τ2 

2. ∀f ∈ F1, [[f ]]τ1 = [[hΣ(f )]]τ2 

3. ∀p∈ P1, [[p]]τ1 = [[hΣ(p)]]τ2 

 

Thus, τ1 is formed from τ2 by discarding any sorts, functions and predicates not found in the 

image of hΣ and duplicating those that multiple elements of Σ1 map to. This is why Μod(hΣ) 

could be considered to be a projection function that extracts a 〈Σ1, Ψ1〉 model embedded within 

each 〈Σ2, Ψ2〉 model. For notational simplicity, we will henceforth drop the signature morphism 

indicator and just write Sen(h) and Μod(h) for metamodel morphism h.  

 

In order for reducts to work as we expect them to, we must also show that the satisfaction 

condition for institutions holds: 

 

∀M ∈ Mod(Σ2, Ψ2), ϕ ∈ Sen(Σ1, Ψ1). Μod(h)(M) �1 ϕ ⇔ M �2 Sen(h)(ϕ) 

 

We do not prove this here but direct the reader to [AKK99] in which proofs are provided for a 

wide range of similar logics.  

 



www.manaraa.com

67 

 

Figure 4.3 illustrates the notions of metamodel morphisms, sentence translations and reducts.  

Here, we relate the metamodels Taxonomy = 〈ΣTaxonomy, ΨTaxonomy〉 and CD = 〈ΣCD, ΨCD〉.  The 

metamodel morphism h:Taxonomy → CD has hΣ which maps the sort Category to the sort Class 

 

 

Figure 4.3. An example of a metamodel morphism. 
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and the predicate subCategory to the predicate subClassOf. With the resulting sentence 

translation function we see that Sen(f)(“∀x:Category. ¬TC(subCategory)(x, x)”) = “∀x:Class. 

¬TC(subClassOf)(x, x)” which clearly follows logically from ΨCD = {∀c:Class. 

¬TC(subClassOf)(c, c)}. The bottom portion of the figure shows how an example of a 

particular model Toll:CD is transformed via the reduct Μod(h) into an instance of Taxonomy. 

Note that the transformation just removes all instances of all sorts, functions and predicates 

other than Class and subClassOf, and these are converted into instances of Category related by 

subCategory. 

4.2.6 Model semantics 

Although models have both syntax and semantics, it is common for the metamodel to only 

characterize the syntactic aspect of the models for a given model type. This is the case with both 

the MOF and Ecore metamodeling languages. One reason for this may be that while the syntax 

of a modeling language is often easily formalizable, the semantics is typically not. For example, 

the UML specification [UML2] expresses the abstract syntax as a metamodel but the semantics 

is expressed using English - the formalization of UML semantics continues to be an area of 

intense research [e.g., LMT09]. 

 

We make a similar assumption with the use of FO+ as a metamodeling formalism and take it to 

define only the syntax of a model type. However, we shall find it relevant to discuss model 

semantics and thus we need a framework for doing so. In general, defining the semantics of a 

modeling language requires the identification of the semantic domain and the definition of a 

semantic mapping from the syntactic structures to their meanings in the semantic domain 
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[HR04]. Since we have argued that a model is really just a graphical way of expressing a set of 

sentences about its subject, we will take a Tarskian approach to do this. In the same way that we 

can talk about the sets of interpretations and satisfying interpretations for sentences of a formal 

language, we assume that we have these for a model as well. In particular, for a model type T 

we define the following: 

• IntrT is the function that maps each T model to its set of interpretations in the semantic 

domain. 

• InstT is the function that maps each T model to its set of satisfying interpretations 

(instances). 

 

We will take these semantic mapping functions to capture the semantics of T. As noted above, 

the definitions of IntrT  and InstT  are not typically given as part of the metamodel T. Note that 

for each T model M, InstT(M) ⊆ IntrT(M) since the satisfying interpretations are also 

interpretations. For example, when T = CD and we consider the class diagram MTollTicket 

shown in Figure 4.2, each element of IntrCD(MTollTicket) is an assignment of sets to the class 

symbols Vehicle, TollTicket, etc. and an assignment of a relation to the association symbol 

authorizes. Such an assignment is also in InstCD(MTollTicket) iff the sets assigned to 

SingleTripTicket and MonthlyTicket are subsets of the set assigned to TollTicket.  

4.3 Model relationships  

Two models are semantically related when the possible interpretations of one model constrain 

the possible interpretations of the other model. More formally, For two models M1:T1 and 

M2:T2 we can define the compatibility relation as follows. 
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Definition 4.1. Compatibility relation between two models. For models M1:T1 and M2:T2 we 

can define the compatibility relation CompM1,M2 ⊆ IntrT1(M1) × IntrT2(M2) to be the pairs of 

interpretations of M1 and M2 that can co-occur as part of the same (larger) possible world.  

 

Similar approaches to relating models semantically are taken elsewhere [G93, MB02]; however, 

we characterize some interesting properties of model relationships in terms of this relation and 

these are given in Table 4.1. The logical consequence property will be significant when we 

discuss partiality relationships in Section 4.3.2. 

 

 

Table 4.1. Some formal properties expressed in terms of the compatibility relation. 

 

 

 

 

Property Occurrence condition Description 

M1 is unrelated to 

M2 

CompM1,M2 = IntrT1(M1) × IntrT2(M2) M1 and M2 are unrelated since they 

do not constrain one another. 

M1 � M2 ∀x1 ∈ InstT1(M1), x2 ∈ IntrT2(M2) ·  

       CompM1,M2(x1, x2) ⇒ x2 ∈ InstT2(M2) 

M1 is a logical consequence of M2 

because every satisfying 

interpretation of M1 only co-occurs 

with satisfying interpretations of M2. 

M1 is inconsistent 

with M2 

¬∃x1 ∈ InstT1(M1), x2 ∈ InstT2(M2) ·  

          CompM1,M2(x1, x2) 

M1 is inconsistent with M2 because 

there are no co-occurring 

interpretations that satisfy both 

models. 
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At the syntactic level, a compatibility relation between models can be expressed
9
 as a larger 

model we call the relator model containing the related models, or endpoint models. The 

interpretations of the relator model represent the larger world in which the interpretations of the 

endpoint models must co-occur. We will call a relator model, along with the designations of the 

embeddings of endpoint models, a model relationship. We can characterize the different ways 

that models can be related by classifying relator models into types. Thus, we can also define 

model relationship types. 

 

For example, Figure 4.4 shows an instance of the objectsOf relationship type that holds between 

sequence diagram BuyTollTicket:SD and object diagram Toll:OD. The relationship between the 

models is expressed by embedding them in relator model R1:objectsOf along with a mapping 

between them that represents additional information used to connect the elements of the models. 

Here the mapping maps each object symbol in the sequence diagram to the object symbol in the 

object diagram that represents the same object (via the identity relation id) and maps each 

message in the sequence diagram to the link in the object diagram over which the message is 

sent (via the relation sentOver).  The content of the relator model is constrained so that both id 

and sentOver are total functions and the mapping must be consistent in the sense that the 

endpoint objects of a message should be the same as the endpoint objects of the link to which it 

is mapped.  

 

The formal approach we use for defining relationship types is to define projection functions 

from the model type of the relator model to the model types of the endpoint models that show 

                                                 

9
 Of course, we are only talking about compatibility relations that are expressible syntactically. 
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how to “extract” the endpoint models from each instance of the relator model. In Figure 4.4, the 

model type of the relator model is [[objectsOf]] and the two projection functions are πOD and 

πSD.  

 

Figure 4.4. A relationship between a sequence diagram and an object diagram. 

aCustomer:Customer

anAttendant:Attendant

aPolice:Police

anAttendant : 
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anAttendant : 
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aPolice : 
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pay fee

check for conterfeit
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give change
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request ticket
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Toll:OD 

BuyTollTicket:SD 

R1:objectsOf πOD(R1) 
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   πSD 

πCD 

[[objectsOf]] 

[[OD]] 

[[SD]] 

id id id sentOver sentOver 
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4.3.1 Defining model relationship types using metamodels 

In Figure 4.4, the triple 〈[[objectsOf]], πOD, πSD〉 defines a model relationship type defined 

between model types OD and SD, and we can assume that there is a metamodel objectsOf that 

characterizes the relator models of this relationship type. Furthermore, the natural thing to 

consider is that pOD and pSD are the reducts corresponding to two metamodel morphisms 

pOD:OD→objectsOf and  pSD:SD→objectsOf that map these endpoint metamodels into relator 

metamodel. Thus, we can get πOD and πSD “for free” since πOD = Μod(pOD) and πSD = Μod(pSD). 

Figure 4.5 illustrates the metamodels and metamodel morphisms involved. 

Figure 4.5. Signature part of the objectsOf relationship type. 

Object Message 

messageEnd 

messageStart 

nextMessage 

Sequence Diagram 

Object Link 

linkEnd 

linkStart 

ObjectDiagram 
  

SD.Message 

SD.messageEnd 

SD.messageStart 

SD.nextMessage 

OD.Object OD.Link 

OD.linkEnd 

OD.linkStart 

objectsOf 

sentOver 

            pOD 

SD.Object 

pSD 
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The full definitions of the metamodels
10

 OD, SD and objectsOf are as follows: 

 

OD = 

sorts   Object, Link 

func  linkStart: Link → Object 

  linkEnd: Link → Object 

    

SD = 

sorts   Object, Message 

func  first : Message, last : Message 

  messageStart: Message → Object 

  messageEnd: Message → Object 

  nextMessage : Message o→ Message 

  

constraints 

// the message “first” has no predecessor 

 ∀x:message. ¬(first = next(x)) 

// only the message “last” has no successor 

 ∀x:message. x ≠ last ⇔ ∃y:message. y = next(x) 

 

objectsOf =   theOD.OD + theSD.SD + 

 subsort  theSD.Object ≤ theOD.Object 

 func  sentOver : theSD.Message → theOD.Link 

 constraints  

  // sentOver preserves endpoint incidence  

∀x: theSD.Message. messageStart(x) = linkStart(sentOver(x)) 

    ∀x: theSD.Message. messageEnd(x) = linkEnd(sentOver(x)) 

 

 

                                                 

10
 These are simplified versions of the corresponding UML diagram types for the purposes of illustration. 
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In addition, we assume that pCD:OD→objectsOf and pSD:SD→objectsOf are the obvious 

inclusion metamodel morphisms. The following notational extensions used in these 

metamodels. Functions with no arguments and only a return type represent constants – e.g.,  

first and last in SD. We designate a partial function using “o→” notation. For example, the 

function next in SD is a partial function since the last message has no next message. The subsort 

designator allows subsetting of sorts to be specified.  The fact that the metamodel objectsOf 

imports the metamodels for OD and SD is expressed by the expression “objectsOf = theOD.OD 

+ theSD.SD + ”. Note that the imported signature elements are qualified with a prefix to ensure 

that there are no naming conflicts. Thus, theOD.Object is a distinct sort from theSD.Object. 

  

Each instance of objectsOf has the sentOver functions that map messages to links. In addition, 

the constraint on sentOver in objectsOf requires that the endpoint objects of a message should 

be the same as the endpoint objects of the link to which it is mapped. The constraint that the 

objects of the sequence diagram should be a subset of objects in the object diagram is expressed 

using the subsort designation
11

. Clearly, the reducts Μod(pOD):[[objectsOf]]→[[OD]] and 

Μod(pSD):[[objectsOf]]→[[SD]] extract the OD and SD endpoint models out of each objectsOf 

instance. Thus 〈[[objectsOf]], Μod(pOD), Μod(pSD)〉 is the desired model relationship type.  

 

We can now generalize the procedure with objectsOf as follows. Given metamodels T1, …, Tn, a 

relator metamodel R and metamodel morphisms h1:T1→ R, …, hn:Tn→ R we can define the 

                                                 

11
 In Figure 4.4 this was expressed using the identity relation id which is defined over all sorts. 
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model relationship type 〈[[R]], Μod(h1), …, Μod(hn)〉. Correspondingly, we will say that the 

metamodel for the relationship type is 〈R, h1, h2, …, hn〉 and call it a relationship metamodel.  

 

A key benefit of using metamodel morphisms for defining model relationship types is that the 

approach can be formulated in a way that is independent of the metamodeling language since 

each metamodeling language can define its own type of metamodel morphism. Furthermore, 

Institution Theory provides a formal means to relate different logics using Institution 

morphisms [GB92] and thus our approach can be extended similarly to heterogeneous 

metamodeling formalisms. We do not pursue this direction further in this thesis as it is 

secondary to our interests here. 

4.3.2 General characteristics of relationship types 

In this section we identify some properties of a relationship type that will be useful in 

subsequent chapters. 

Mapped relationship types 

A relationship type may or may not have mapping content. The relationship type defined by 

metamodel 〈R, h1, h2, …, hn〉, has mapping content just in case there is exists an element of R 

that is not found in the image of any metamodel morphism hi. In this case, that element would 

not be projected into any of the endpoint models and so it represents additional information not 

found in any of these models. If a relationship type has mapping content we call it a mapped 

relationship type. For example, objectsOf is a mapped relationship type because the sentOver 

association is not found in either the endpoint OD or the SD. In contrast, the submodelOf 
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relationship type defined in Section 4.3 has no content beyond its endpoint models and so is not 

mapped. 

Pure relationship types 

In a relationship type, the relator model may or may not be uniquely determined (up to 

isomorphism) by its endpoint models. Consider relationship type defined by 〈R, h1, h2, …, hn〉, 

and a tuple of models 〈M1, …, Mn〉 of types T1, …, Tn, respectively. Define R(M1, …, Mn) =    

{r: R |  h1(r) = M1∧ … ∧ hn(r) = Mn}. That is, R(M1, …, Mn) is the set of possible conformant 

relator models of type R for 〈M1, …, Mn〉. Then there are three possible cases: 

C1.  |R(M1, …, Mn)| = 0 

C2.  |R(M1, …, Mn)| > 0 and all r ∈ R(M1, …, Mn) are isomorphic 

C3.  |R(M1, …, Mn)| > 0 and some r ∈ R(M1, …, Mn) are non-isomorphic 

 

In case (C1) no relator model exists for 〈M1, …, Mn〉 and so this relationship does not hold. In 

case (C2), a unique relator model exists, up to isomorphism. Thus, if R is a mapped relationship 

type then the mapping is derived from 〈M1, …, Mn〉. When R is such that for all tuples 〈M1, …, 

Mn〉, only (C1) or (C2) occurs, then we say that R is a pure relationship type.  

 

The objectsOf relationship type is not a pure relationship type. Note that in Figure 4.4, case (C2) 

holds since there is only one conformant way to define the sentOver association; however, if we 

change Toll by adding another link between aCustomer and anAttendant then case (C3) would 

hold. The definition of pure relationship type requires that (C3) cannot hold for any tuple of 

endpoint models. The relationship type submodelOf is pure. It is easy to see that any 
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relationship type that is not mapped must be pure since the only way to get more than one 

relator model in R(M1, …, Mn) is to have mapping content. Pure relationship types are 

significant because it is possible to test conformance of the endpoint models to the relationship 

without specifying any mapping information between the models (i.e., since the mapping 

information is derived). 

Transformations 

A pure relationship type in which the relator model is uniquely determined (up to isomorphism) 

by all but one of its endpoint models is called a transformation. More formally, for pure 

relationship type defined by 〈R, h1, h2, …, hn〉, let the endpoint models identified by 〈h1, h2, …, 

hn -1〉 be the ones that uniquely determine the relator model. We call these the inputs to the 

transformation and the endpoint model identified by hn is the output of the transformation. 

Since the relator model is determined by the input models we can the project the output model 

from this using the reduct Μod(hn). If the transformation is a mapped relationship type then the 

mapping content in the relator model represents traceability information for the transformation.  

Partiality relationship types 

In Table 4.1, we identified the formal condition for when logical consequence holds between 

models. A binary relationship type that guarantees that this holds between its endpoint models 

is called a partiality relationship type. Formally, 〈R, h1, h2〉 is a partiality relationship when 

∀m1:T1, m2:T2, r:R ·  r ∈ R(m1, m2) ⇒ m2 � m1. Intuitively, when r:R holds between models 

M1 and M2, then M1 is a semantically partial model relative to M2 and so anything M1 says can 

be inferred from what M2 says given the mapping information in r.  
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Most of the interesting model relationship types encountered in software engineering are 

partiality relationship types. For example, if M1 is an abstraction of M2 then we expect M2 � M1 

since the abstraction should contain some derived form of the information in M2 where the 

mapping defines the relationships between the abstract elements in M1 and the refined elements 

in M2. As a more concrete example, we define submodelOf(M1, M2) in Section 4.3 as the case 

where M1 ⊆ M2 and M2 � M1 since a submodel should not only be a syntactic subset of the 

whole model but should also semantically carry a part of the information in the whole model. 

Many common partiality relationship types are listed in Section 4.3.2. 

 

Partiality relationship types have a number of characteristics that make them interesting for 

expressing the relationships between model roles. First, due to logical consequence, they are 

truth preserving and so we can propagate truth between models. For example, if we know that 

what M2 says is true about its subject and M1 is a correct abstraction of M2 then we know that 

what M1 says is also true. Second, partiality relationships are often closed under compositions. 

For example, if M1 is an abstraction of M2 via mapping r1 and M2 is an abstraction of M3 via 

mapping r2 then M1 is an abstraction of M3 via a mapping that can be formed from a 

composition of r1 and r2. Third, we can often decompose a model using a partiality relationship. 

For example, we can decompose a model into submodels (this is the focus of Chapter 7) or into 

abstractions. Conversely, we can compose submodels or abstractions into larger models. Note 

that since it depends on the kind of partiality relationship used, the notion of 

decomposition/composition here is more general than just “parts” based.  The last two 

properties relate to the fact that partiality relationship types often form categories in the sense of 
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Category Theory
12

. Although it brings a rich mathematical foundation to models and their 

relationships, exploring the Category Theoretic perspective is beyond the scope of this thesis. 

4.3.3 Abstract model relationship types 

In a way similar to model types, we can define abstract relationship types that have no specific 

relator metamodel but have properties that its instances must satisfy. In general, the relationship 

types required for a particular modeling project can often be seen as concrete specializations of 

typical abstract relationship types encountered in software engineering such as submodelOf, 

abstractionOf, aspectOf, etc. These abstract relationship types carry specific semantics and play 

distinct roles within software development that are inherited by their specializations. If formally 

characterized, they can also be used to provide guidance in developing their concrete 

specializations. Some authors have proposed candidate lists of abstract relationship types useful 

in modeling [F05, BCE06]; however, determining a complete set of such types is an open 

problem.  

 

We present some common abstract binary relationship types in Figure 4.6. Note that almost all 

of them are shown to be partiality relationship types
13

. The partiality transformations all 

construct an output model M1 that has a particular partiality relationship to the input model M2 

and the type of this relationship is indicated by the dashed line. Formal characterizations of 

most of these are beyond the scope of this thesis and we leave this to future work.  

                                                 

12
 A good introduction for computer scientists can be found in [P93]. 

13
 Since we are not giving the formal definitions of each of these types, we are appealing to the readers intuition 

about the validity of the classification. As a result, some may be disputed (e.g., is refactoringOf  necessarily a 

partiality relationship?) 
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Eq-submodelOf  and eq are the names we give to the commonly used homomorphism and 

isomorphism mappings where the element correspondences are interpreted as equivalence [e.g., 

SE05]. We formalize eq below and submodelOf is defined in Section 4.3. Extractors extract a 

submodel from a model and these are defined in Chapter 5 along with detailOf.   

Constructed relationship types 

In a similar way to model types, some abstract relationship types can be concretized in a generic 

way for any model type by defining a type constructor and these are called constructed 

relationship types. The benefit of constructed relationship types is that they are obtained “for 

free” from the other information. For example, we define eq[T] for model type T as follows: 

eq[T](M1, M2) holds iff there is an isomorphism between M1 and M2 where we interpret 

corresponding elements as being semantically equal – i.e., they denote the same semantic 

entities. The construction of relator metamodel is as follows: 

   eq[T](M1:T, M2:T) =  M1.T + M2.T +  

        func   

        for each sort S ∈ sortsT,  

                mapS : M1.S → M2.S 

 

        constraints  

      // each map function is bijective   

      for each sort  S ∈ sortsT,  

                 ∀x1, x2:M1.S · mapS(x1) = mapS(x2) ⇒ x1 = x2 

                 ∀x2: M2.S ∃x1:M1.S · mapS(x1) = x2 
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     // preserve incidence  

       for each function F:S1 × … × Sn-1 →  Sn ∈ funcT 

                 ∀x1:M1.S1, …, xn-1:M1.Sn-1 ·  

                         M1.F(x1, …, xn) = M2.F(mapS1(x1), …, mapSn-1(xn-1)) 

       for each predicate P:S1 × … × Sn ∈ predT 

                 ∀x1:M1.S1, …, xn:M1.Sn ·  

                         M1.P(x1, …, xn-1) � M2.P(mapS1(x1), …, mapSn(xn)) 

 

In a similar way, we can define the submodel relationship type submodelOf[h](T1, T2) given any 

signature morphism h:ΣT1→ΣT2 . This construction is described in the next section.   

4.4 Submodels and Diagrams 

One of the most basic types of relationships between models is the submodelOf relationship. A 

commonly occurring example of a submodel in practice is the diagram. A model is often 

manifested as a set of diagrams, possibly of different types, that decompose and structure the 

content of the model in a coherent way. The prototypical example of this is the UML which 

defines a single metamodel for UML models and identifies thirteen types of diagrams that can 

be used with it [UML2]. Diagrams are normally associated with concrete syntax but since in 

this thesis we are interested only in content (i.e., abstract syntax), a diagram reduces to the 

submodel it picks out from a model.  

 

Intuitively, given a metamodel T, if M1:T is a submodel of M2:T then the elements of M1 are a 

subset of the elements of M2 and any predicate or function instance that holds between elements 

in M1 also holds in M2. This is the syntactic criterion and we can write it as M1 ⊆ M2 ; however, 

there is also the semantic criterion M2 � M1 since submodelOf is a partiality relationship. This is 
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based on the intuition that a "reasonable" submodel should carry a subset of the information that 

the whole model carries and so it should not say anything that the whole model does not say. 

Having M1 ⊆ M2 alone is not sufficient because there are cases when it could lead to confusion 

for model consumers. 

 

Figure 4.7 illustrates the issue using the transportation system example. Note that the designator 

“{complete}” means that the set of subclasses indicated covers the superclass – i.e., every 

instance of Vehicle must also be an instance of Car, SUV or Truck. This designator is a valid 

part of UML 2.2 class diagram syntax. Although both DTollPriceA and DTollPriceB are well-

formed class diagrams and it is the case that DTollPriceA ⊆ DTollPrice and DTollPriceB ⊆ 

DTollPrice, only DTollPriceA satisfies the semantic criterion. A consumer reading DTollPriceA 

would correctly learn that the class Vehicle is covered by its subclasses Car, SUV and Truck. 

However, a consumer reading DTollPriceB would be misled into thinking that Vehicle is 

covered by Car and Truck alone.  
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Figure 4.7. Examples of valid and invalid submodels. 

DTollPrice:CD 

Car SUV 
cargo : Ctype 

SingleTripTicket Monthly Ticket 
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weight : int 

numPassengers : int 

authorizes TollTicket 

purchasePrice: real 

discount: real 

Truck 

Car SUV Truck
cargo : Ctype

Vehicle
weight : int

numPassengers : int

authorizes

 

Car SUV Truck
cargo : Ctype

Vehicle
weight : int

numPassengers : int

authorizes

 

{complete} 

DTollPriceA:CD 

� � 

{complete} 

{complete} 

DTollPriceB:CD 
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4.4.1 The submodelOf relator metamodel 

The metamodel for the submodel relationship type over the version of CD shown in Figure 4.1 

can be expressed as: 

submodelOf(M1:CD,M2:CD) =   M1.CD + M2.CD +  

        subsort  M1.Class ≤ M2.Class 

                       M1.Association ≤ M2.Association 

            M1.Attribute ≤ M2.Attribute 

           M1.Operation ≤ M2.Operation 

 

        constraints  

 // M1.CD is a subset of M2.CD  

              ∀x:M1.Association · M1.startClass(x) = M2.startClass(x) 

                          ∀x:M1.Association · M1.endClass(x) = M2.endClass(x) 

                          ∀x:M1.Attribute · M1.attrClass(x) = M2.attrClass(x) 

                          ∀x:M1.Operation · M1.opClass(x) = M2.opClass(x) 

                          ∀x1, x2 :M1.Class · M1.subclassOf(x1 , x2) ⇒ M2.subclassOf(x1 , x2) 

 

 

 

pM1:CD → submodelOf(CD, CD), pM2:CD → submodelOf(CD, CD) are metamodel morphisms 

into M1.CD and M2.CD, respectively. With the submodel relationship, the two class diagrams 

actually share the same symbols in their abstract syntax. That is, the same class, association, 

attribute and operation symbols appear in the submodel as in the whole model. Thus, the 

submodel could be considered to simply be a delineation of a portion of the whole model. Note 

that this addresses both the syntactic and semantic criteria for submodel for this simplified 

version of class diagram. 
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The submodel relationship can also hold between models of different types. For example, in a 

UML model, we consider the diagrams to pick out submodels of type CD, AD, SMD, etc. In 

general, we would like to define the submodel relationship that can hold between two models 

Msub:Tsub and M:T.  

 

In order to accomplish this we assume we have a signature morphism h:ΣTsub→ΣT that maps the 

signature of Tsub to a semantically equivalent subsignature of T. We can then generically define 

a constructor for the submodel relationship type defined by h as: 

 

   submodelOf[h] (Msub:T1, M:T) =  Msub.Tsub + M.T + ΨTsubSem+ 
 

        subsort  for each sort  S ∈ sortsTsub,  

                                   Msub.S ≤ M.h(S) 

 

        constraints  

                       for each function F:S1 × … × Sn-1 →  Sn ∈ funcTsub 

                          ∀x1:Msub.S1, …, xn-1:Msub.Sn-1 ·  

                                     Msub.F(x1, …, xn-1) = M.h(F)(x1, …, xn-1) 

                       for each predicate F:S1 × … × Sn ∈ predTsub 

                            ∀ x1:Msub.S1, …, xn:Msub.Sn ·  

                                      Msub.P(x1, …, xn) ⇒ M.h(P)(x1, …, xn) 

            

 

 

With metamodel morphisms psub:Tsub → submodelOf[h](Tsub, T) and pbase:T → 

submodelOf[h](Tsub, T). The set of constraints ΨTsubSem represent the additional constraints that 

we need to add to satisfy the semantic criterion.  
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For diagram types, it is typically the case that ΣTsub ⊆ ΣT as is the case with the diagram types of 

a UML model. In this case, h maps each sort, function and predicate of ΣTsub to the same sort, 

function and predicate in ΣT. However, we need the more general form of h when we consider 

the case that a relationship is a submodel of a model. For example, consider the extends(det:CD, 

gen:CD) relationship type that can hold between two class diagrams when every class in det is a 

subclass of a class in gen. Now consider the case where we have E12(Veh1, Veh2):extends for 

two class diagrams Veh1 and Veh2 as shown in Figure 4.8. Not only are both Veh1 and Veh2 

submodels of the same UML model TransportationSystem but the extends mapping E12 is as 

well since TransportationSystem contains the subclass relationships between the classes of 

Veh1 and the classes of Veh2.   

 

Figure 4.9 shows the signature morphisms mapping CD, UML (only partially shown) to the 

extends relator metamodel. All the morphisms map in the obvious way except hdU for which we 

show a few of the correspondences to get the idea of how the morphism works. Note that the 

following conditions must also hold:  

 

hCU  = hdU  o pdet 

hCU  = hdU  o pgen 

 

 

This ensures that arguments det and gen of extends map to UML consistently with the way CD 

maps to UML. 
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Figure 4.8. An example of how a relationship can be a submodel. 

Car Truck

Sedan VanPickupHatchback

Car Truck
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E12:extends 

submodelOf 

submodelOf 

submodelOf 
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Figure 4.9. Morphisms used for submodel relationships. 
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4.4.2 Submodel types 

The signature morphism h:ΣTsub→ΣT shows how Tsub models can be submodels of T models. 

Now we consider whether there are any additional criteria that Tsub must satisfy. Note that in 

general, the constraints of Tsub may be stronger than the constraints of T. For example, in 

UML, communication diagrams can only represent interactions in which message overtaking 

does not take place [UML2] and so the constraints on communication diagrams are stronger 

than on the interactions they represent within a UML model. Thus, a communication diagram is 

a type of submodel of a UML model that is more constraining than UML. 

 

A plausible criterion for Tsub would be rule out situations where we can have Msub: Tsub with 

no possible M:T for which Msub can be a submodel. For example, let Tsub be that same as CD 

but without the acyclicity constraint on the subClassOf relationship. Thus, the class diagram 

that consists of a single class that is a subclass of itself is a valid Tsub model but it clearly 

cannot occur as a submodel of any valid CD. Thus, we would reject Tsub as being a valid 

submodel type for CD. We can express the submodel type validity condition formally as 

follows:  

   ∀m1:Tsub ∃m:T · submodelOf(m1, m)   

 

This expresses the requirement that Tsub is extensionally consistent with T. That is any Tsub 

model can be extended to a T model. 
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4.4.3 Submodel sum 

An important operation is the sum of a set of submodels of a common model. Intuitively, if M1 

and M2 are submodels of M then the sum M1 + M2 is the smallest submodel of M that contains 

both M1 and M2 as submodels
14

.   The computation that achieves this is to take the union of the 

content of the models for each sort, function and predicate. First consider sums of submodels of 

the same type. Formally, the semantics of the sum M1 + M2 of submodels M1:T and M2:T is 

defined as follows
15

: 

  

  for each sort S ∈ sortsT, [[(M1:T + M2:T).S]] = [[M1.S]] ∪ [[M2.S]] (4.1) 

  for each function F ∈ funcT, [[(M1:T + M2:T).F]] = [[M1.F]] ∪ [[M2.F]]    

  for each predicate P ∈ predT, [[(M1:T + M2:T).P]] = [[M1.P]] ∪ [[M2.P]]    

 

This can be generalized to the sum of an arbitrary finite set of submodels of type T in the natural 

way by extending the unions. Although the types of M1 and M2 are T, we take the type of (M1 + 

M2) to be 〈ΣT, ∅〉 since we cannot in general guarantee that (M1 + M2) � ΨT. Figure 4.10 

illustrates a simple example of this. The submodels taken individually are well-formed CD 

models but the sum violates the acyclicity constraint. Note that we still consider Cars to be a 

valid sum of Cars1 and Cars2 even though the result is not a well-formed CD. The reason why 

we “tolerate” this will become clear in Chapter 6 when we discuss macromodels. The idea is 

                                                 

14
 This corresponds to the colimit operation in Category Theory. 

15
 We treat functions and relations here as sets of tuples and union is set union. 
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that the modeler intends both that Car = Car1 + Car2 and that Car � ΨCD but these constraints 

are checked independently.  

 

Now consider the situation where we are taking the sum of models having multiple submodel 

types {T1, …, Tn}  - then we must have a way to determine the result type. To do this we 

assume that the sum operation is typed by a result type and there exist signature morphisms 

from each submodel type to the result type. For example, consider the situation depicted in 

Figure 4.11. This expresses the fact that M is the sum of submodels Veh1, Veh2 and the 

relationship E12. In this case, we seek the sum operation that takes models/relationships of 

types {CD, extends} and produces a submodel with signature 〈ΣUML, ∅〉. The signature 

morphisms shown in Figure 4.9 show how to construct such a sum: first transform the models 

 

 

Figure 4.10. An example of inconsistent union. 
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to signature ΣUML and then take the sum as defined in formula 4.1 above. The signature 

morphism h:ΣT1→ΣT2 defines a corresponding transformation of models Up(h):Mod(ΣT1) → 

Mod(ΣT2) where for any M:T1, the semantics of Up(h)(M) are as follows: 

 

  for each sort S ∈ sortsT2, [[Up(h)(M).S]] = ∪{ [[M.s]] | S = h(s)}   

  for each predicate F ∈ funcT2, [[Up(h)(M).F]] = ∪{ [[M.f]]| F = h(f)}   

  for each predicate P ∈ predT2, [[Up(h)(M).P]] = ∪{ [[M.p]] | P = h(p)}   

 

That is, we rename and union the sets of elements, function and predicate instances according to 

the mappings in h. Thus, in Figure 4.11, M = +{Up(hCU)(Veh2), Up(fCU)(Veh1), Up(fdU)(E12)}. 

This computation applied to the example of Figure 4.8 is shown in Figure 4.12. 

 

Figure 4.11. The sum of submodels having different types. 

Veh2:CD 

Veh1:CD 
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4.5 Summary 

In this chapter, we provide a formal account of model types, model relationships and model 

relationship types. Sort ordered first order logic with transitive closure (FO+) is used as the 

metamodeling formalism and the metamodel morphism is proposed for relating metamodels in 

sound and metamodeling formalism independent way. Various characteristics of relationship 

types are discussed. Among these, partiality is a key property that a relationship type could have 

 

Figure 4.12. An application of Up transformation to perform a sum. 

  

Source models Models transformed to ΣUML 

Veh2 = { 
    class = {Car, Truck}, 

    all other ΣCD sets empty 
    } 

Up(hCU)(Veh2) = { 
    class = {Car, Truck}, 

    all other ΣUML sets empty 
    } 

Veh1 = { 
    class = {Hatchback, Sedan, Pickup, Van}, 

    all other ΣCD sets empty 
    } 

Up(hCU)(Veh1) = { 
    class = {Hatchback, Sedan, Pickup, Van}, 

    all other ΣUML sets empty 
    } 

E12 = { 
    det.class = { Hatchback, Sedan, Pickup, Van }, 
    gen.class = { Car, Truck }, 

    subClassOf = {〈Hatchback, Car〉,  

                            〈Sedan, Car〉,  

                            〈Pickup , Truck〉,  

                            〈Van , Truck〉}, 

    all other Σextends sets empty 
} 

Up(hdU)(E12) = { 
    class = {Hatchback, Sedan, Pickup, Van,  
                  Car, Truck} 

    subClassOf = {〈Hatchback, Car〉,  

                            〈Sedan, Car〉,  

                            〈Pickup , Truck〉,  

                            〈Van , Truck〉}, 

    all other ΣUML sets empty 
    } 

 M = { 
 class = {Hatchback, Sedan, Pickup, Van,  
                  Car, Truck} 

  subClassOf = {〈Hatchback, Car〉,  

                           〈Sedan, Car〉,  

                           〈Pickup , Truck〉,  

                           〈Van , Truck〉}, 

    all other ΣUML sets empty 
    } 
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and carries the semantic property of logical consequence. It turns out that many of the common 

relationship types used in software engineering are partiality relationship types and we show 

these in a taxonomy of abstract relationship types. Moreover, we can define these commonly 

occurring types as abstract relationship types that are concretized for particular modeling cases 

by defining the appropriate metamodel. Finally, the submodelOf relationship type is explored in 

detail as a precursor to its use in subsequent chapters. 
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Chapter 5  

Content Criteria 

As discussed in Section 2.3, our concern in this thesis is with the content requirements of 

a model rather than its quality requirements. Thus, in the intent framework, we define the 

notion of content criteria as expressing the modeler’s intentions about what information a 

model ought to contain. In this chapter, we explore the problem of expressing content 

criteria and make the following contributions. We define a general formal approach to the 

problem and then develop it in detail for the special case of content criteria for diagrams 

and submodels. We then show how expressing content criteria can be used to support 

model comprehension, improve model quality by identifying six new types of defects and 

support automation and model evolution. 

5.1 A general formulation of content criteria 

How can we characterize what information a model role M:T ought to contain? Our 

approach will be to assume that M is a partial model with respect to some maximal model 

G:T (the base model role) and then we will characterize the information that ought to be 

in M as the part of G that must be contained in M. We will express this semantic 

condition syntactically by characterizing the type of partiality relationship that must hold 
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between realizations of M and the corresponding realizations of G. To help motivate this, 

consider the following example from the transportation system scenario.  

 

Say that we identify the need for the model role MTollGUI:CD that shows the structural 

model of the user interface for a toll booth control system we intend to build. Our 

objective is to formally express what information about the toll booth control system 

should be found within a realization of MTollGUI by expressing role constraints that it 

must satisfy. To do this, assume that we can identify another model that can act as a 

surrogate for the toll booth control system. For example, let the surrogate be  

MTollProg:Java which represents a (possibly unknown) complete Java program that will 

implement the toll booth control system. By “complete” we mean that for any Java 

program P that realizes MTollProg there exists no Java program P1 that implements more 

of the required behaviours of the toll booth control system than P. Furthermore, for the 

purposes of this example, we will assume that any information that can be expressed in a 

class diagram of a system can also be expressed in a Java program of that system. That is, 

we assume the Java language is at least as expressive as the class diagram language
16

. 

 

We can characterize the content of MTollGUI:CD relative to the content of  

MTollProg:Java since we know that the information about the structure of the user 

interface must be a found as part of any complete Java implementation. That is, the 

content criterion of MTollGUI can be expressed as a relationship to MTollProg 

                                                 

16
 In general, we need the modeling language of the base model to be at least as expressive as the modeling 

language of the model for which we are defining content criteria. 
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containing the role constraints that must hold between these model roles. We will call this 

relationship CCMTollGUI and make the following observations about it: 

O1. Since we know that MTollGUI is a partial model relative to MTollProg, this means 

that CCMTollGUI is a type of partiality relationship and guarantees the semantic 

condition MTollProg � MTollGUI as discussed in Chapter 4. This limits CCMTollGUI 

to relationships such as submodel, abstraction, etc. (or some combination of these).   

O2. The fact that we say that the toll booth control system has a model MTollGUI means 

that we are assuming that it has a user interface - otherwise a model showing the user 

interface would be meaningless. This implies that the relationship CCMTollGUI imposes 

some constraints on MTollProg that follow from the fact that there is a user interface. 

For example, this may be the constraint that each realization of MTollProg must have 

a main window class that will contain the user interface. We call such constraints, the 

preconditions due to the required existence (i.e., the existential intent) of MTollGUI. 

O3. CCMTollGUI satisfies the following uniqueness principle: for each realization of 

MTollProg that satisfies the preconditions, there must exist a unique realization of 

MTollGUI that satisfies the constraints of CCMTollGUI.. Thus, CCMTollGUI is a kind of 

transformation from the set of realizations of MTollProg that satisfy the preconditions 

to the set of realizations of MTollGUI .  

 

Observation (O1) follows from our assumptions that MTollProg is complete, that the GUI 

is part of the system and that a Java program can express anything that a class diagram 

can.  Observation (O2) follows from the fact that simply asserting the existential intent 

for a model can be enough to say something about the subject. This is a case of the 
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tangling that can occur between the intent about the subject and the intent about the 

model as discussed in Section 2.1.3. To justify observation (O3), consider the following 

thought experiment. Assume we have a realization MTollProg. Now assume we ask the 

modeler to create the corresponding realization of MTollGUI according to what they 

think it should be (i.e., according to what they believe is the intent of the definer of 

MTollGUI). Since they will always produce some specific model MTollGUI, they must 

have followed some selection principle for deciding on a particular class diagram 

amongst all possible class diagrams. Furthermore they could follow this principle for any 

realization of MTollGUI that satisfies the preconditions. This suggests that CCMTollGUI is a 

transformation and it is an expression of this selection principle.  

 

Before we fully accept this principle, let us consider some nuanced aspects of it.  First 

note that when we say that the realization of MTollGUI is unique we always mean unique 

“up to isomorphism” since two models are considered the same if they differ only in the 

identity of their symbols but retain all attributes and relationships of these symbols.  

 

Second, consider that we naturally expect the modeler intent about content to correspond 

to the “optimal” realization that would satisfy the purpose. In this case an optimal 

realization of a model role satisfying its purpose is one that contains all the information 

required by the purpose and no information not required by the purpose. However the 

purpose alone may underdetermine the realization of a model since there may be many 

possible realizations that are equally optimal.  
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For example, say that the purpose of MTollAttr:CD is to show that there exist toll related 

attributes in MTollProg. In this case, a class diagram that shows a single toll-related 

attribute is optimal for satisfying the purpose. Now, if there are several toll related 

attributes then there will be several corresponding class diagrams that are all optimal. In 

this example, each of the alternative optimal realizations are semantically distinct. 

Another case of underdetermination is where the purpose uniquely determines the 

required information but there are multiple semantically equivalent ways to express this 

in the modeling language. In both these situations, the modeler must still select one 

realization among the alternate equivalent ones and so the modeler intent must carry 

additional constraints in order to collapse the underdetermined choice. Thus, although 

model purpose may not select a unique realization, the modeler intent will and so this 

must appeal to factors that go beyond model purpose when necessary. 

 

Third, note is that even though the content criterion expresses the selection principle, this 

may always not be formalizable. For example, model role MTollComplex may be 

intended to show the parts of the toll system that are deemed to be complex and the 

selection principle here may be a subjective assessment of complexity by the modeler. 

Although it is not formalizable it is still correct to say that there is content criterion that 

selects a unique realization of MTollComplex for each realization of MTollProg. Our 

interest in this thesis lies primarily with those content criteria that are formalizable since 

these are amenable to automation and tool support. 
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Fourth, consider the case where the content criterion is formalizable but there is not 

enough information in the base model to do it. For example, let MTollTeamA show the 

classes of MTollProg that team A must implement. Although there is a unique realization 

of MTollTeamA that could be extracted from any realization of MTollProg, the criteria 

for extracting this requires additional information about which team each class of 

MTollProg is assigned to. In this case we say that the content criterion is 

underdetermined by the base model. Deciding whether or not this is an acceptable 

situation depends on the usage context and is one way in which content criteria could be 

used to assess model quality. We discuss this in greater detail for the case of submodels 

in Section 5.2. 

 

Finally, note that the uniqueness principle depends on the assumption that a base model G 

can exist, even if it is not actually created. In the case of MTollGUI this is a reasonable 

assumption since it is a model at the design stage of software development and there is a 

well defined resultant artifact that it describes a part of. At the requirements phase, 

however, this assumption may not be reasonable. When there are multiple stakeholders 

and they express incommensurable viewpoints on the requirements, then there is no 

single global base model that can combine these partial models. Thus, we recognize that 

our approach to content criteria is only applicable to contexts when this assumption 

holds.   

5.1.1 Formalization 

Figure 5.1 shows the general case when there are several partial models. The base model 

role G:TG acts as a surrogate of the thing S being modeled and represents the complete TG 
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model of S. This means that every realization G satisfies the condition that for every other 

TG model M that says true things about S,  G � M.  

The content criteria for all model roles are defined relative to G. Specifically, the content 

criterion CCMi of Mi is defined as follows. 

Definition 5.1. Content criterion. Given model roles Mi:TMi and G:TG, the content 

criterion CCMi of Mi is defined as the constraint PreMi(G) ∧ Mi = FMi(G) where  

• G is the base model 

• PreMi (the precondition) is a property over TG models and is an existential 

constraint for the role Mi 

• FMi:TG→TMi is a partial transformation that is defined for all TG models that 

satisfy PreMi  and satisfies the partiality condition: 

 ∀m:TG · PreMi(m) ⇒ m � FMi(m) 

 

 

Figure 5.1. A general approach to defining content criteria. 
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Thus, FMi is a transformation that defines a particular realization of Mi for each 

realization of G that satisfies the precondition and the realization of Mi is guaranteed to 

be a partial model relative to G. In general, the problem of expressing the content 

criterion of Mi is exactly the problem of finding a property that uniquely identifies a TMi 

model among all TMi models that are partial relative to G. Note that although we refer to a 

base model G it may never actually be created within a modeling project. In this case, it is 

considered to be “unrealized” – the idea that a model role may be unrealized within a 

project is addressed in Chapter 6.  

 

In Section 5.2 we elaborate the detailed implications of this approach to content criteria 

for the special case where the partiality relation is restricted to the submodel relation. 

However, in order to strengthen the intuitions behind this we first sketch some examples 

that are not submodels.  

5.1.2 Example 1: Content criteria of a sequence diagram 

Once again we use the transportation system example but this time we want to define the 

content criteria for the sequence diagram role BuyMonthlyTicket:SD that shows how to 

purchase a monthly toll ticket. Assume that G = TransSystemControl:Java representing a 

complete implementation of the system controller (i.e., it includes the toll ticket purchase 

functionality). A sequence diagram can express a set of positive and a set of negative 

traces [UML2]. Now consider the partiality relationship type between sequence diagrams 

and Java programs that holds when the sequence diagram depicts a set of traces in the 
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Java program
17

. In order to define CCM1 we must find a property among all sequence 

diagrams of TransSystemControl that only BuyMonthlyTicket satisfies. We can proceed 

by asking what system traces should be included and what should be excluded and define 

the informal requirements due to the purpose as follows: 

• BuyMonthlyTicket should include only traces that begin with a customer initiating 

the purchase of a monthly ticket. 

• BuyMonthlyTicket should include only “happy path” traces. We define a happy 

path trace as one that ends in the customer actually getting a ticket. 

• BuyMonthlyTicket should include all traces that satisfy the above conditions 

 

Using more formal language we could say the following: 

FBuyMonthlyTicket :Java→SD  := 

For objects Tk:MonthlyTicket and C:Customer, transformation FBuyMonthlyTicket  

extracts from TransSystemControl the complete set of distinct traces of object 

calls satisfying condition that it begins with Tk.buy being invoked by C and ends 

with Tk.sold = TRUE. 

 

PreBuyMonthlyTicket  := 

• TransSystemControl contains classes Customer and MonthlyTicket with the latter 

having method buy and attribute sold:boolean 

                                                 

17
 We do not define this partiality relationship type here but it should be clear that such a relationship type 

is possible since sequence diagrams are intended to be used to depict traces in programs. 
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• When TransSystemControl runs it is possible to have an instance of 

MonthlyTicket and for all instances t of MonthlyTicket, if t.buy is invoked then 

eventually it is possible that t.sold = TRUE 

 

This is a case where the purpose underdetermines the content criteria because while no 

specific objects and classes where specified in the requirements, some specific choices 

were made in the content criteria (i.e., object Tk, class MonthlyTicket, etc.). While these 

choices are necessary to specify a particular sequence diagram, they are semantically 

equivalent to other alternatives that could have been made (e.g., alternate naming).  Note 

that we assume that the set of traces extracted by FM1 is expressible by a single sequence 

diagram – this is a validity condition that FM1 must satisfy. Whether or not it is desirable 

to do so is a different issue and this is addressed by the part of the intent framework 

dealing with decomposition in Chapter 7.  

5.1.3 Example 2: Content criteria of a state machine model 

In example 1, although BuyMonthlyTicket was a different type of model than 

TransSystemControl, it represented the same level of abstraction – i.e., the traces 

expressed by BuyMonthlyTicket are all directly visible as paths through the program 

TransSystemControl.  In this example, we consider the content criteria for the state 

machine
18

 CustMonthlyTicket:SM that shows the customer’s view of the procedure for 

purchasing a monthly toll ticket. This time we assume G represents the most detailed 

                                                 

18
 There are many state machine modeling languages (e.g., finite state machines, StateCharts, etc.). We 

don’t specifiy the particular one here but we assume the existence of states and transitions. 
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state machine that expresses the procedure for purchasing a monthly toll ticket. Note that 

this model is sufficiently complete to contain the information in CustMonthlyTicket and 

has its own content criteria defined relative to TransSystemControl:Java.  

 

Intuitively, the content criterion of CustMonthlyTicket says that it is the most refined state 

machine abstraction of G in which the states and transitions are distinguishable to a 

customer. Here we define a state machine abstraction as a partiality relationship in which 

sets of states (transitions) in the more refined state machine are mapped to particular 

states (transitions) in the more abstract state machine that semantically represent the 

disjunction of the elements in the refined sets. We define customer distinguishability as 

follows: 

• Two states s1 and s2 are distinguishable by the customer iff there is some customer 

visible property that holds in s1 and not in s2. 

• Two transitions t1 and t2 are distinguishable by the customer iff the start states are 

distinguishable or the end states are distinguishable or t1 involves a different 

customer interaction than t2. 

 

We can define FCustMonthlyTicket:SMD→SMD by saying that FCustMonthlyTicket(G) is the state 

machine abstraction of G that is constructed by disjunctively combining the G-states that 

are customer indistinguishable and disjunctively combining the G-transitions that are 

customer indistinguishable. We can use this definition to check some cases of non-

conformance even though G is unknown. For example, in Figure 5.2, state machine M2 is 

definitely not conformant because it distinguishes some states that are not distinguishable 
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to the customer. It can be “repaired” by producing the abstraction M1 that does satisfy the 

indistinguishability criterion.  

 

Figure 5.2. Examples of candidate versions of CustMonthlyTicket. 
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5.1.4 Aspects of modeler intent that content criteria do not address 

Although the set of content criteria of a model captures much of the modeler intent about 

the model, it is missing some aspects. In particular, since it only contains role constraints 

that hold between a model role and a base model role G, it does not address the 

following: 

1. How particular partial models of G are intended to be related to each other within G 

2. How different (complete) models G1, G2, … are intended to be related to each other 

3. How G is intended to be hierarchically decomposed into partial models 

Cases (1) and (2) are addressed using relationships between models as discussed in 

Chapter 4. Case (3) is addressed by decomposition criteria in Chapter 7. 

5.2 The content criteria of submodels 

We now turn to the investigation of the content criteria for a common class of model role: 

a model role that is intended to be a particular submodel of the base model role. We will 

refer to this type of model role as a view and the content criterion of the view 

characterizes this submodel. This is an important special case, since in practice, a model 

is often manifested as a set of diagrams and as discussed in Chapter 4, we take a diagram 

to be a submodel. We now extend this and state that a diagram is more specifically, a 

view, since the purpose of a diagram is to present a particular part of the model.   
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For example, in the UML model of the transportation system, one class diagram may be 

intended to show the different types of vehicle classes in the transportation system while 

another is intended to show the different classes involved with road tolls. The content 

criteria of diagrams are not typically modeled and even when they are made explicit, it is 

only done through informal means such as comments or as part of the name of the 

diagram. However, as discussed in Chapter 1, the explicit and precise expression of 

content criteria is a fruitful activity because it improves model quality, model 

comprehension and provides support for automation and model evolution. We first 

illustrate the content criteria of submodels using the transportation system example and 

then develop the formal details.  

5.3 Illustration 

Consider the diagram DTollTicket:CD from the transportation system example as shown 

in Figure 5.3. The intent of this class diagram is “to show the information relating to toll 

tickets.” Assume that this intent implies that the following constraints should hold 

between DTollTicket and the UML model role TransportationSystem:  

TT1. All and only the classes TollTicket, its direct or indirect subclasses and the 

classes related to TollTicket by a navigable association are included in 

DTollTicket. 

TT2. All and only the attributes of TollTicket are included in DTollTicket. 

TT3. All and only the navigable associations from TollTicket are included in 

TollTicket. 
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These constraints constitute the content criteria for DTollTicket. Expressing the content 

criteria explicitly and precisely is useful for all three of the modeling roles: definer, 

producer and consumer. The definer can articulate the intent of the diagram and 

effectively communicate this to the producer. The producer can use this to assess whether 

they are conforming to this intent by making sure that nothing is included that does not 

belong in the diagram and that everything that does belong is included. The consumer can 

use the constraints to properly interpret the content of the diagram. For example, without 

(TT3) it may not be clear to the consumer whether or not the diagram is showing all the 

associations between the classes or that there may be more that have been omitted from 

the diagram. Thus, while diagrams are typically assumed to be incomplete relative to the 

model, the content criteria provide the consumer with information about the ways in 

which the diagram is complete.   

 

If formalized, the content criteria are useful for automated support of the management of 

the diagram content in order to ensure that the intent of the diagram is maintained as the 

specification model evolves. For example, if the producer adds a class to the model via 

the realization of DTollTicket and does not make it a subclass of TollTicket, this violates 

constraint (TT1) and can be flagged as such. On the other hand, if a subclass of TollTicket 

is added to the realization of TransportationSystem by some other means, such as 

manually through another diagram, change propagation, round-trip engineering, etc., the 

violation of constraint (TT1) can trigger the “repair” action of adding it to diagram 

DTollTicket.  
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The precondition of DTollTicket is that the class TollTicket exists in 

TransportationSystem since without the presence of this class, none of the criteria (TT1), 

(TT2) or (TT3) would be well defined. At a more conceptual level, it does not make 

sense to have a diagram “to show the information relating to toll tickets” without 

assuming that some implementation of the concept of “toll ticket” exists in the model.   

Thus, a realization of TransportationSystem has a corresponding realization of 

DTollTicket iff it contains the class TollTicket.  

 

Now consider diagram DTollPrice shown in Figure 5.4. The intent of this diagram is to 

show the information related to toll price within TransportationSystem. We interpret this 

as the following content criteria: 

 

Figure 5.3. A diagram showing the details of the class TollTicket. 

DTollTicket:CD 

SingleTripTicket Monthly Ticket 

TollTicket 

Vehicle 
authorizes purchaseDate: date 

seller: string 
tollStation: string 
purchasePrice: real 
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TP1. Include only the class Vehicle and its direct subclasses and the class 

TollTicket and all of its subclasses. 

TP2. Include all and only the attributes of the included classes that affect toll price. 

TP3. Include all associations between the included classes.  

 

Like the content criteria for DTollTicket, this lists a set of diagram inclusion constraints 

that together extract a unique submodel for each realization of TransportationModel; 

however, unlike DTollTicket, it is unclear whether the truth of these conditions can be 

fully determined from the content of the model TransportationSystem alone. In particular, 

constraint (TP2) requires that attributes be included only if they affect toll price but no 

means for determining this property is evident. This highlights another benefit of 

articulating the content criteria – they expose contextual information that is assumed 

when interpreting the diagram and that may be missing from the base model.  

 

Figure 5.4.Transportation system diagram dealing with toll ticket price. 

DTollPrice:CD 

Car SUV 
cargo : Ctype 

SingleTripTicket Monthly Ticket 

Vehicle 

weight : int 

numPassengers : int 

authorizes TollTicket 

purchasePrice: real 

discount: real 

Truck 
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One response to this is to extend the model to include this information. In this case, this 

could be done in several ways ranging from formal to informal including: including an 

OCL expression in the model that computes toll price and then determining what 

attributes are used in this expression, adding a stereotype to attributes that indicates when 

they affect toll price, using a naming convention on attributes to indicate when they affect 

toll price, annotating the classes and attributes with comments, etc.  

 

Another response to this situation is to treat the inclusion of an attribute in the diagram as 

an assertion that the attribute affects toll price. In this case, diagrams are not only used as 

views on the model but also to extend the model itself. Since diagrams are typically 

considered to only be relevant to the presentation of a model and not its content, this 

approach has the drawback that the information may not be preserved in further 

refinements of the model (e.g., into the code) and hence would be lost. This suggests that 

the first response may be preferred if this information is needed in downstream processes 

– i.e., missing context information should be viewed as a case of model incompleteness. 

 

To summarize what we have seen in this illustration: 

• The content criteria of a view (such as a diagram) can be expressed as inclusion 

constraints that together pick out a unique submodel for each realization of the 

base model. 

• There may be preconditions that must hold for the inclusion conditions to be well 

defined and hence are required for the existence of the view. 
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• The inclusion constraints may be not be fully expressible in terms of information 

in the base model. 

 

We now turn to the formalization of these concepts and then discuss their implications. 

5.4 Formalization 

We follow the general formulation for content criteria introduced in Section 5.1.1. First 

consider partial transformations of the form F:T × T1 × … × Tn → T0 where the following 

holds
19

:  

∀m:T, m1:T1, …, mn:Tn · DEFINED(F(m, m1, …, mn))  

                                                                 ⇒ submodelOf(F(m, m1, …, mn) , m) 

 

These extract a submodel of m and so satisfies the partiality condition. We will refer to 

this kind of transformation as an extractor
20

. Since an extractor is a partial function we 

can define the precondition predicate PreF ⊆ T × T1 × … × Tn as the condition under 

which F is defined. Thus, we have:  

∀m:T, m1:T1, …, mn:Tn · PreF(m, m1, …, mn) ⇒ submodelOf(F(m, m1, …, mn) , m) 

 

We now define content criteria in terms of an extractor.  

                                                 

19
 The 2

nd
 order predicate DEFINED(F(x)) used for partial functions is TRUE iff F(x) has a value for x. 

20
 From a database perspective, an extractor is similar to a parameterized query except that the query is not 

defined for all database or parameter values and the parameters can include types of information not found 

in the database. 
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Definition 5.2. Content criterion of a view. Given model roles Msub:Tsub and M:T, if 

Msub is a view of M, then it has an associated content criterion of the form: 

           CCMsub := PreF(M, M1, …, Mn) ∧ Msub = F(M, M1, …, Mn) 

where F is an extractor and PreF  is defined as: 

∀m:T, m1:T1, …, mn:Tn · PreF(m, m1, …, mn) � DEFINED(F(m, m1, …, mn)) 

Since PreF is defined in terms of F, we can use the abbreviated form for content criterion: 

CCMsub := F(M, M1, …, Mn) 

 

 

Here, M is the base model role and the other model roles M1:T1, …, Mn:Tn are referred to 

as the generators of Msub. We think of the generators as jointly “generating” the view of 

the base model. This intuition is elaborated further in Section 5.4.3. 

 

From an existential perspective, the view Msub can exist only when the views M, M1, …, 

Mn exist and PreF(M, M1, …, Mn) holds. From a conformance perspective, a tuple of 

realizations for Msub, M, M1, …, Mn satisfy this constraint iff the realization of Msub is 

the same submodel of M as F(M, M1, …, Mn). When this constraint is satisfied we say 

that Msub satisfies the intent expressed by its content criteria.  

 

Note that the same extractor can be used to express different content criteria. For 

example, we may say that CCM1 := subsOf(TransportationSystem, MVehicle) or CCM1 :=  

subsOf(TransportationSystem, MPayment). In the first case we are saying that M1 is 

intended to be the submodel of TransportationSystem that consists of the classes in model 
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MVehicle and its subclasses. In the second case we are saying that M1 is intended to be 

the submodel of TransportationSystem that consists of the classes in model MPayment 

and its subclasses. These express different intents for the content of M1. This is even the 

case if it turns out that the content of MVehicle is the same as the content of MPayment 

(and so the content of M1 is the same) for some or all realizations of 

TransportationSystem. 

 

We can define the content criteria as a partial transformation formally using the 

relationship type approach described in Chapter 4. Thus, it is a relator metamodel on the 

combined signatures of Tsub, T, T1, …, Tn that includes the metamodels of these and 

additional constraints showing how these models are related. As an example, we will 

express content criteria CCDTollTicket := Ftoll(TransportationSystem) of DTollTicket where 

extractor Ftoll is defined as follows. 

 

Ftoll(M:UML): CD =  Out.CD + M.UML + (1) 

subsort Out.Class ≤ M.Class, Out.Association ≤ M.Association, Out.Attribute ≤ M.Attribute (2) 

constraints (3) 

// precondition  

∃ mc:M.Class · M.className(c) = “TollTicket” ∧ (4) 

// inclusion constraints defining extractor  

 (∀c:M.Class · (∃c1: Out.Class · c1 = c)  ⇔ ((c = mc ∨ TC(M.subClassOf(c, mc) ∨  

                                                                   (∃a:M.Association · M.endClass(a) = c ∧    

                                                                                       M.startClass(a) = mc ))) ∧                                                              

(5) 

 (∀a:M. Association · (∃a1: Out. Association · a1 = a) ⇔  M.startClass(a) = mc) ∧                                                                    (6) 

 (∀a:M. Attribute · (∃a1: Out. Attribute · a1 = a) ⇔  M.attrClass(a) = mc) ∧  (7) 

 (∀c1, c2: Out. Class · Out.subClassOf(c1, c2) ⇔ M.subClassOf(c1, c2)) ∧ (8) 
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 (∀a: Out. Attribute · Out.attrClass(a) = M.attrClass(a)) ∧  (9) 

 (∀a: Out. Association · Out.startClass(a) = M.startClass(a)) ∧  (10) 

 (∀a: Out. Association · Out.endClass(a) = M.endClass(a)) ∧  (11) 

 (∀c: Out. Class · Out.className(c) = M.className(c)) (12) 

 

Recall that line (2) indicates that Ftoll imports the signature and constraints for CD and 

UML and to avoid name clashes these are “namespaced” with “Out” and “M”, 

respectively.  Out represents the class diagram that is the result of applying Ftoll(M). Line 

(3) asserts that the elements in Out are subsets of the elements in M. Line (4) asserts the 

precondition that M must contain a class named TollTicket.   

 

The inclusion constraints are what must hold between the content of Out and M and are 

defined in the scope of the precondition so that the variable mc is bound. These encode 

the constraints for diagram DTollTicket expressed in words in Section 5.3. Constraint 

(TT1) is expressed by (5), constraint (TT2) is expressed by (7) and (9) and constraint 

(TT3) is expressed by (6), (10) and (11).  Note that an instance of Out cannot exist if the 

precondition does not hold in M and this encodes the fact that the inclusion constraints 

are not evaluable without mc. However, if it does hold then Out is uniquely determined 

by M and so Ftoll is a partial transformation.  

 

The content criteria above are written in a standardized form. If we assume that we are 

expressing content criteria CCMsub := F(M, M1, …, Mn) where Msub:Tsub and M:T, M1:T1, 

…, Mn:Tn, then the form is:  
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    F(M:T):Tsub =  Out.Tsub + M.T + M1.T1 + … + Mn.Tn  

        subsort  for each S ∈ sortsTsub, Out.S ≤ M.S  

        constraints  

        // precondition  

           precondition ∧   

        // inclusion constraints  

           for each S ∈ sortsTsub, 

               (∀x:M.S · (∃x1:Out.S · x1 = x) ⇔ QS(x)) ∧  

 

           for each function H:S1 × … × Sn-1 → Sn ∈ funcTsub 

                 (∀ x1:Out.S1, …, xn:Out.Sn-1 ·  

                         Out.H(x1, …, xn-1) = M.H(x1, …, xn-1)) ∧ 

 

           for each predicate P:S1 × … × Sn ∈ predTsub 

                 (∀ x1:F.S1, …, xn:F.Sn ·  

                         Out.P(x1, …, xn) ⇔ M.P(x1, …, xn) ∧  QP(x1, …, xn)) ∧ 

 

           TRUE  

 

In each inclusion constraint, Qi represents a formula called the inclusion condition that 

may involve bound variables in the precondition. Intuitively, the inclusion conditions 

pick out the parts of M that belong in Msub and provides a systematic way of defining 

content criteria. Based on this form, the content criteria can be seen to consist more 

simply of the precondition and a set of inclusion conditions. For example, the extractor 

representing the content criteria for DTollTicket could be expressed more compactly as 

the set of definitions: 

 

Ftoll(M:UML): CD := [   

     precondition := ∃ mc:M.Class · M.className(c) = “TollTicket”, 

    QClass(c) :=   (c = mc ∨ TC(M.subClassOf(c, mc) ∨  

                         (∃a:M.Association · M.endClass(a) = c ∧    

                                                    M.startClass(a) = mc )), 

     QAssociation(a) := M.startClass(a) = mc, 

 



www.manaraa.com

120 

 

     QAttribute(a) := M.attrClass(a) = mc   

] 

 

For further compactness, we assume that by default if a sort inclusion condition is not 

mentioned then it must be FALSE (i.e., no instances are included) and if a predicate 

inclusion condition is not mentioned then it must be TRUE (i.e., all instances are 

included). When the content criteria CCMsub is expressed in terms of inclusion conditions 

it is clear that for every M that satisfies the precondition, the inclusion constraints specify 

a unique submodel Msub of M. This is because there is a constraint for each sort and 

predicate of Msub that determines exactly what subset of these from M are included in 

Msub
21

. To ensure that the resulting submodel F(M) is also always a well formed Tsub 

model – i.e., that it satisfies the constraints ΨTsub – we must add the following validity 

conditions: 

Consistency.          M.ΨT ∪ Out.ΨTsub ∪ ΨF � FALSE 

Well-formedness.   M.ΨT  ∪ ΨF  � Out.ΨTsub 

 

Here, M.ΨT and Out.ΨTsub are the imported versions of the constraints of T and Tsub 

found in the relator metamodel for F and ΨF are the set of subsort, precondition and 

inclusion constraints. The consistency condition says that all of the constraints in F must 

be consistent and well-formedness condition guarantees that the submodel extracted by 

the content criteria from each T-model is a well formed Tsub-model.   

                                                 

21
 A function instance must always included in Msub if the input elements are included and the function is 

in Tsub. 
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5.4.1 Generalizing content criteria 

Note that although Ftoll is defined as a relationship type it is actually a very specialized 

partial transformation because it makes reference to the class TollTicket. This suggests 

that this relationship type would only ever be used to express the content criteria of 

DTollTicket. However, in many cases, it is possible to generalize the diagram intent and 

content criteria by replacing certain constants by parameters representing generators. For 

example, we can generalize the intent for diagram DTollTicket by defining the extractor 

classDetails(M:UML, C:One[class]) as: 

classDetails(M:UML, C:One[class]) CD := [   

     precondition := ∃x:C.Class, mc:M.Class · mc = x, 

    QClass(c) :=   (c = mc ∨ TC(M.subClassOf(c, mc) ∨  

                         (∃a:M.Association · M.endClass(a) = c ∧    

                                           M.startClass(a) = mc )), 

     QAssociation(a) := M.startClass(a) = mc, 

     QAttribute(a) := M.attrClass(a) = mc     

] 

 

 

classDetails is identical to Ftoll except that it takes the class for which it shows the details 

as an argument. classDetails is a generic extractor in the sense that for any class C it 

extracts the submodel from M that details C in the particular way described by the 

inclusion conditions. Given this generic extractor we can more simply and compactly 

express the content criteria of DTollTicket as the expression CCDTollTicket := 

classDetails(TransportationSystem, Class(TransportationSystem, “TollTicket”)). 

 



www.manaraa.com

122 

 

An obvious benefit of using parameterized extractors is reuse since it reduces the 

incremental effort to define the content criteria for different diagrams when the content 

criteria have the same form. In addition, a predefined set of parameterized extractors can 

be composed algebraically to define more complex content criteria at the “macroscopic 

level” without having to specify inclusion conditions. For example, if we want view 

DVehToll to represent the class detail of both Vehicle and TollTicket we can express this 

as CCDVehToll := classDetails(TransportationSystem, Class(TransportationSystem, 

“TollTicket”)) + classDetails(TransportationSystem, Class(TransportationSystem, 

“Vehicle”))].   

 

There are other benefits of parameterized extractors as well. They can be used to define a 

library of common view types, like classDetails that are domain-independent and hence 

are meaningful in many contexts. 

5.4.2 Content criteria and naming 

As discussed in Section 3.2, the name is typically the source of informally expressed 

information regarding the modeler’s intent about the model’s content. Thus, we can view 

content criteria as a formalized version of the model name and so there ought to be a 

semantic correspondence between the name and the content criteria. In particular, the 

name should reflect some meaningful abstraction of the content criteria. For example, a 

better name for DTollTicket might be “The details of class TollTicket.” Note that the 

content criteria would typically contain more information about the content than the 

name. For example, we could also generate a name like “The attributes, navigable 

associations and subclasses of class TollTicket” but this may be too unwieldy for a name. 
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When this correspondence between name and content criteria does not hold, then it 

negatively impacts the quality of the model because the name is misleading. We discuss 

this further in the context of defects detectable using content criteria in Section 5.5.2.  

The correspondence between name and content criteria also suggests another possibility: 

that it should be possible to generate a “good” name for a model from its content criteria.  

Furthermore, with generic content criteria as in Section 5.4.1, the name generation could 

be reused in many contexts. For example, classDetails(M,  C) can have the corresponding 

name schema “The details for class C”. The benefit of generating the name from the 

content criteria is that names can be assigned in a consistent way (e.g., naming 

conventions enforced) and it ensures the semantic correspondence holds. 

5.4.3 The role of generators and detail views 

We have used the term generator to represent the parameters of an extractor.  This is 

because an extractor should be thought of as a function that “generates” a view of the 

base model for each combination of generator values. From a pragmatic perspective, we 

expect to use extractors where the resultant view has a meaningful relationship to its 

generators and so this relationship is useful for expressing modeler intent about the view.  

 

One kind of relationship between the generators and the view is when the generator 

defines an “aspect”
22

 of the base model. For example, the extractor Proj(M:T, Σ) that 

returns the projection of M on the subsignature Σ ⊆ ΣT is this kind of extractor. Another 

                                                 

22
 We are using the term “aspect” more loosely than the specialized meaning in aspect oriented modeling.  
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common kind of relationship between generators and the view is aboutness. Thus, 

although the view is of the base model it is often the case that it is about the generators in 

some way – i.e., the generators represent the subject of the view.  

 

A special case of this occurs when the view shows some details about another model. In 

this case, we call it a detail view. For example, DTollTicket is a detail view since it shows 

the class details for class TollTicket. In general, we say that M1 is the F1 detail view of M 

for some model Mg when its content criterion has the form CCM1 := F1(M, Mg) and F1 

shows some details associated with Mg.  Detail views form a natural “refining” 

navigation path between views because a consumer can “expand” an element from one 

view into its detail view(s). This style of navigation has been leveraged by modeling tools 

such as GME [LMB01] and MetaEdit+ [MEdit], although views are not formalized. 

 

Detail views give rise to a corresponding class of relationship types that can hold between 

views that we call detailOf relationships.  This was presented as a common abstract 

relationship type in Figure 4.6. Informally, we say that M1 is a detailof M2 iff M1 is a 

detail view for some element in M2. Formally we define it as follows.  

 

Definition 5.3. DetailOf relationship. Given an extractor F1: T × TE → T1 and a 

submodel type T2, where  TTTE
Σ⊆Σ⊆Σ 2 , then we can define the F1(E)-

detailOf(M1:T1, M2:T2) relationship type as follows: 

           F1(E)-detailOf(M1, M2) � (CCM1 := F1(M, E)) ∧ ∃x:M2.TE · x = E 
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That is, M1 is an F1 view of M generated by E and M2 contains E. Typically, M2 is also a 

view of M. Since detailOf relationship types can hold between views, they provide a 

convenient way to express the intended detailing relationships that define the structure of 

a set of views.  

5.5 Value of content criteria 

5.5.1 Impact on model comprehension 

As discussed in Chapter 1, as a linguistic entity, a model has a pragmatic aspect in 

addition to syntactic and semantic aspects. The intent of the modeler about what 

information the model should contain is a source of pragmatic information that can affect 

a consumer’s interpretation of the model. Here we consider the ways in which the content 

criteria of a submodel can affect the interpretation of it.  

 

Based on the general form of the content criterion described in Section 5.4 for the 

arbitrary submodel Msub of M, if the content criterion is satisfied then we know the 

following facts: 

F1. The precondition holds for M, QS holds for all elements of sort S in Msub and QP 

holds for all instances of predicate P in Msub. 

F2. Msub contains all the elements of M of sort S for which QS holds and all the 

instances of predicate P in M for which QP holds. 

 

Fact (F1) says that knowing the content criteria of Msub allows a consumer to infer 

information from it that may not be visible explicitly in the content of the model. For 
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example, it is only through the content criteria of diagram DTollPrice shown in Figure 

5.4 that we know that the attributes shown for vehicles are all related to the toll price 

computation. As another example, consider diagram DFamily in Figure 5.5 with content 

criteria given by the following extractor: 

 

FDFamily(M:UML): CD := [   

        precondition := ∃veh, fam:M.Class, cr:M.Association · 

                   M.name(veh) = “Vehicle” ∧  

                   M.name(fam) = “Family” ∧  

                   M.name(cr) = “Carries”, 

    QClass(c) :=  (c = veh ∨ TC(subClassOf(c, veh))) �  

                   (c = startClass(cr) ∨ TC(M.subClassOf(c, startClass(cr)))) ∧  

                     (fam = endClass(cr)  ∨ TC(M.subClassOf(fam, endClass(cr))) ∧                     

                     ¬∃cr1 : M.Association ·  // no restriction of cr to non-fam 

          M.subsets(cr1, cr) ∧ 

             (startClass(cr1)  = startClass(cr)  ∨  

                                  TC(M.subClassOf(startClass(cr1), startClass(cr)))) ∧  

                                   (fam ≠ endClass(cr1) ∧ 

                                   ¬TC(M.subClassOf(fam, endClass(cr1)))                                                  

                   

] 
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This expresses the condition that DFamily contains all vehicle types that can carry a 

family. From the precondition we can infer the implicit information that there exist 

classes Vehicle and Family and association Carries. From QClass we can infer that the 

classes in DFamily are all subclasses of Vehicle and that have a (possibly inherited) 

Carries relationship to Family
23

. None of this information is evident from the content of 

DFamly. This contrasts with DTollTicket shown in Figure 5.3 having content criteria 

given in (13). In this case, the precondition that there exists a class TollTicket is also 

explicitly evident in the diagram itself. Thus, the precondition is only sometimes a source 

of additional implicit information.  

 

Now consider fact (F2).  This says that Msub is complete with respect to M for properties 

QS and QP  for all sorts S and predicates P in Tsub. Thus, although the interpretation of 

                                                 

23
 Note that we are using the subsets relationship that can hold between associations in UML 2.2 to define 

association restrictions on more specialized classes. 

 

Figure 5.5. Diagram showing vehicle types that can carry families. 

Car SUV 

Sedan Hatchback 

DFamily:CD 
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diagrams typically assumes they are incomplete and hence takes an open world 

interpretation for all properties
24

, the content criteria say that one can safely interpret 

Msub as closed world with respect to properties QS and QP. Specifically this means that it 

is possible to answer queries involving ¬QS and ¬QP directly using the information in 

Msub. For example, consider DTollTicket in Figure 5.3 and the query “Does TollTicket 

have a subclass AnnualTicket?” Without knowing the content criteria in (13) this query 

cannot be decided by the information in DTollTicket; however, with the content criteria, 

the answer can be determined to be “no.”  

 

Finally, we consider how content criteria can be used to compensate for submodels that 

violate the semantic partiality criterion of logical consequence for submodels defined in 

Chapter 4. Recall that we argued that a "reasonable" submodel should not say anything 

that the whole model does not say when interpreted using the standard semantics 

associated with a model type. In Figure 5.6 we have reproduced the example that shows a 

case where the submodel DTollPriceB does not satisfy this condition and so, in isolation, 

would be misinterpreted. However, if the content criteria are known, then the implicit 

information in them can be used to compensate for the misreading of a submodel since it 

can be used to adjust the consumer’s interpretation to take the modeler’s intent into 

account. For example, if we know that the content criteria of DTollPriceB extract only 

the vehicles that can be two-seaters, then the consumer can infer that the set of subclasses 

                                                 

24
 Of course this depends on the modeling language. For example, for a state machine, the semantics 

assumes that it shows all the states and transitions and not just a subset of them. 
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of Vehicle shown may not be complete and hence the constraint “{complete}” should not 

be interpreted in the standard way. 

 

 

 

 

Figure 5.6. Examples of valid and invalid submodels (reproduced from Figure 4.7). 

Car SUV Truck
cargo : Ctype

Vehicle
weight : int

numPassengers : int

authorizes

 

DTollPrice:CD 

Car SUV 
cargo : Ctype 

SingleTripTicket Monthly Ticket 

Vehicle 

weight : int 

numPassengers : int 

authorizes TollTicket 

purchasePrice: real 

discount: real 

Truck 

{complete} 

Car SUV Truck
cargo : Ctype

Vehicle
weight : int

numPassengers : int

authorizes

 

{complete} 

DTollPriceA:CD DTollPriceB:CD 

� � 

{complete} 



www.manaraa.com

130 

 

5.5.2 Impact on model quality  

We can directly relate the formal structure of content criteria to the types of defects that 

expressing content criteria can be used to detect as shown in Table 5.1. The first two 

types of defects relate to the coherence between content criteria and submodel names. As 

discussed in Section 5.4.2, the name is typically the carrier of informally expressed 

information about the submodel’s intent. Two potential problems are identified here. 

Naming inconsistency refers to the fact that there is a potential for confusion if different 

diagrams with similar intents are named in ways that do not reflect their similarity. 

Naming inaccuracy occurs when the name does not express the intent as given by the 

content criteria and thus leads to confusion for model consumers and producers.  

 

For example, consider the two diagrams “M1 – details of toll tickets” and “M2 – the 

kinds of vehicles” with corresponding content criteria CCM1:= 

classDetails(TransportationSystem, ClassSet(M, “TollTicket”)) and CCM2 := 

classDetails(TransportationSystem, ClassSet(M, “Vehicle”)), respectively. The similarity 

of the intent that is evident from their content criteria is not reflected in the naming. A 

more consistent naming scheme might be “M1 – details of toll tickets” and “M2 – details 

of vehicles”. On the other hand, if the name of M2 was “M2 – details of cars” this would 

be case of naming inaccuracy since M2 contains more than just the details of cars.  

 

Content exclusion and inclusion defects can occur when an instance of the submodel 

violates the content criteria – either by excluding intended information or by including 

unintended information. For example, DTollTicket would have an exclusion defect if it 
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omitted the class SingleTripTicket and it would have an inclusion defect if it included the 

class Car as a subclass of Vehicle.  

 

The final two types of defects are only “potential” defects in the sense that even a 

violation may be considered acceptable. The value here is in the fact that the modeler is 

forced to consider the situation and make a decision on how to deal with it. The case of 

unmodeled information occurs when the content criteria is underdetermined by the 

information in M. This was the case with diagram DTollPrice discussed above since the 

Table 5.1. Defect types detectable by formally defining content criteria. 

 

Defect Type Description Occurrence criteria 

Naming 

inconsistency 

The form of the name of 

Msub differs from other 

submodels with similar 

intent. 

The form of the name of Msub differs 

from other submodels with same 

extractor and different parameters. 

Naming 

inaccuracy 

The intent of Msub does 

not mean the same thing as 

its name. 

The extractor of Msub does not produce 

the submodel expressed by the name of 

Msub. 

Content 

exclusion 

Msub does not contain 

some information from M 

that it is intended to. 

An instance of an inclusion constraint in 

which right hand side is satisfied but the 

left hand side is not.  

Content 

inclusion 

Msub contains some 

unintended information. 

An instance of an inclusion constraint in 

which the left hand side is satisfied but 

the right hand side is not. 

Unmodeled 

information 

The intent of Msub cannot 

be (fully) expressed using 

the content of M. 

One or more formulas Qi cannot be 

formally expressed in terms of   

information in M. 

Weakly modeled 

information 

The intent of Msub can only 

be expressed by using 

informal information in M. 

One or more formulas Qi are expressed 

using content in M that is not modeled in 

the metamodel of M. 
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attribute inclusion condition QAttr  requires a determination of whether the attribute 

affected toll price and TransportationSystem does not have enough information to 

determine this. As discussed there, the corrective action required depends on whether or 

not the information represented by the inclusion conditions is considered to be needed by 

downstream processes using the model.  

 

The last type of defect is the case where the inclusion condition can be specified using 

information in the model but this information is only “weakly modeled” using some 

informal scheme such as naming conventions. For example, if a convention is used to 

prefix all attributes that affect toll price with the string “Toll_”, this would allow the 

inclusion condition to be defined by checking for this prefix. The potential problem with 

this is that the semantics of these conventions may be lost in downstream uses of the 

model unless they are recorded with the model in some way. Thus, it may be preferable 

to promote this information to “first class” status, when possible, by modeling it directly 

– e.g., putting all toll related attributes in a single class called TollCalculation.  

5.5.3 Support for automation and evolution 

Since content criteria are expressed as role constraints between a submodel and its model, 

all the opportunities for automation discussed in Section 2.3.3 are applicable. This 

includes conformance checking, extension to conformance and change propagation. The 

details of these scenarios are discussed in general for role constraints in Chapter 6.  
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Automation and naming defects 

Since name related defects require an interpreter of natural language, neither type of 

defect can be reliably detected in an automated way. However, one way to avoid these 

kinds of defects is to always generate diagram names from the content criteria as 

suggested in Section 5.4.2. This ensures consistency and accuracy of naming. In 

particular, as the model evolves, generating names from content criteria provides a way to 

update the names in an automated way. 

5.6 Summary 

In this chapter we have explored the concept of content criteria as introduced in the intent 

framework. The content criterion of a model characterizes the kind of information the 

modeler intends to be in the model. We approach the expression of this by assuming that 

a model is always intended to be some partial view of the maximal model of the subject 

that can be expressed using a particular model type. This idea is developed in detail for 

the special case of submodels, and in particular, diagrams of a model. The general form 

of content criteria for submodels is given as consisting of a precondition and a set of 

inclusion conditions. Based on this form, the various ways in which content criteria can 

provide value is elaborated. Model comprehension is shown to be augmented by the 

implicit information that content criteria provides about the semantic interpretation of the 

view. Improved model quality is supported by allowing six new types of defects to be 

detected that are based on content criteria. Finally, we discuss the use of content criteria 

for supporting automation and model evolution. 
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Chapter 6  

Macromodeling 

  

As discussed in Chapter 2, modeler intent is expressed at the role level. In this chapter we detail 

one of the main contributions of this thesis: a modeling language for the role level called the 

macromodel language. We define the syntax (abstract and concrete), semantics and the usage 

modes of macromodels. Macromodels allow model roles to be defined with role constraints and 

relationship types can be used for expressing role constraints that hold between models. Special 

support is given for views and the expression of content criteria. In addition, special support is 

given for expressing model decompositions; however, we defer the complete treatment of this to 

Chapter 7 where we discuss decomposition criteria. 

6.1 Macromodels 

We begin this exposition by using examples to informally introduce the notation and concepts of 

macromodels. Consider Figure 6.1. This is a diagram of the transportation system macromodel 

TransportationProject that identifies all the model roles in the transportation system project. A 

macromodel is represented by a box with a thick border. The name and other attributes are given 

in the top compartment – we refer to this information as the tag. Every element type in a 

macromodel has a tag
25

. The designator “{inc}” as part of the macromodel tag is used to 

                                                 

25
 Although sometimes it is optional. 
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indicate that the diagram does not show all the contents of the macromodel. Boxes with thin 

borders represent model roles while lines represent intended binary relationships between these 

roles (intended n-ary relationships are expressed using the diamond notation as with UML class 

diagrams). In both cases, their types are shown in the tag.  

 

In general, we use the term “relationship” loosely to refer either to an actual relationship 

between particular models or to a relationship between roles that expresses the intent that a 

particular model relationship must hold between models that play the roles. Whenever there is 

potential for confusion we will refer to the former as a model relationship and the latter as a role 

relationship. The relationships shown in a macromodel are always role relationships. The 

 

Figure 6.1. A macromodel of the transportation system example. 

TransportationProject {inc} 

Toll <<view>> 

theModel 

f2:caseOf 

objectsOf objectsOf 

+ 

f6:actorsOf Human Resources: 
OrgChart 

TransportationSystem: 
UML 

Toll Station: OD Toll Transaction: SD 

Buy Monthly Ticket: SD Buy Single Ticket: SD 

*Buy Monthly Ticket: 
OD 

*Buy Single Ticket: 
OD 

f1:caseOf 

// the user is the first object 

fo: ∀x:object · 

(¬∃y:object · next(y) = x) ⇒ 

name(x) = “User” 
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notation for relationships varies depending on their properties. If the direction of a relationship 

is important, it has an arrow head. The arrow head is filled unless the relationship is a 

transformation in which case the arrow head is open and points to the result of the 

transformation. Normally, a relationship has a name and a type and the name is used to identify 

the relator model representing the mapping. However, there are cases when the name can be 

omitted and then we say that the relationship is anonymous. One such case is when the 

relationship type is pure and this is the case with the occurrences of objectsOf . Another case is 

when the mapping is unrealized. We discuss the case of unrealized models and mappings below.  

 

Since macromodels can contain macromodels, these are represented by a contained box as is 

illustrated with the macromodel Toll. This containment hierarchy forms a tree with the root 

referred to as the root macromodel (in this case this is TransportationProject). Any non-root 

macromodel is called a contained macromodel. A contained macromodel could be named or be 

anonymous like the one containing roles BuySingleTicket:OD and BuyMonthlyTicket:OD. For 

example, here we use an anonymous macromodel to express the fact that TollStation is intended 

to be the sum of the two object diagrams. Note that, the name/type pair for any non-anonymous 

model role or relationship must be unique within its root macromodel. 

 

A model role or relationship can be marked as unrealized by beginning its tag with an asterisk. 

Saying that a role is unrealized means that there is no corresponding model/mapping in the 

project that plays it but it must be possible for there to exist a model/mapping that could satisfy 

its constraints. This is used to express more complex constraints graphically by introducing 

intermediate models or mappings. For example, in Figure 6.1, we want to show that 

TollStation:OD contains all and only the objects and links required by BuySingleTicket:SD and 
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BuyMonthlyTicket:SD. This is achieved by showing that it is the sum of the pair of unrealized 

object diagrams BuySingleTicket:OD and BuyMonthlyTicket:OD which each represent the 

minimal object diagram of their corresponding sequence diagram. 

6.1.1 Views, presentations and decompositions 

The boxes Human Resources and TransportationSystem in Figure 6.1 represent simple model 

roles while the other ones are views as defined in Chapter 5. The generators and the base model 

can be shown connected to the view via dashed arrows. In the case of a generator, the arrow 

points to the view and in the case of the base model it points to the base model. The generator 

endpoints can optionally be given a name (not shown in this example) and the base model 

endpoint always has the name theModel. When the extractor defining the content criteria of the 

view takes a single generator as an argument then it can be indicated on the dashed arrow for the 

generator – this is  case with the instances of objectsOf. Views are indicated by the stereotype 

“<<view>>” in the tag and have the base model designator theModel; however, both of these 

may be omitted in certain cases as we discuss next. 

 

Toll is a kind of view of TransportationSystem that is also a macromodel. Views that are 

macromodels are called presentations and these can only contain other views. Thus, a view 

contained within a presentation may omit its stereotype since it must also be a view.  

Furthermore, if the base model designator is omitted then it is considered to be inherited from 

the containing presentation. Thus, the base model for BuySingleTicket:SD, BuySingleTicket:OD 

and for the anonymous presentation containing BuySingleTicket:OD is 

TransportationSystem:UML. This feature reduces the effort and complexity of expressing 

collections of views of the same model.  
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The notation also allows a presentation to be combined with its base model into a single box 

rather than having separate boxes connected with the theModel designator. This more compact 

notation is useful for the common case where a model has only a single presentation. This is 

illustrated with the model TransportationSystem:UML in Figure 6.2. The tag of the base model 

TransportationSystem:UML is shown on the first line of the top compartment and the tag of its 

presentation is shown on the second line. In this case, it is an anonymous presentation that 

additionally is a decomposition and this is indicated by the view stereotype variant 

“<<+view>>.” A decomposition is a presentation that decomposes its base model. That is, it 

includes the implicit constraint that the base model is the sum of the views within the 

presentation. Decompositions are a commonly occurring structure within a macromodel and 

these are studied in detail in Chapter 7. 

6.1.2 Owned constraints 

Figure 6.1 shows another important feature of macromodels. Although relationship types 

provide one way to express role constraints, there are cases when this is not sufficient because a 

role requires a “one-off” role constraint. In this case, it can be expressed within a compartment 

of the role box. This is illustrated by BuySingleTicket : SD which adds the constraint that the 

name of the first object in the sequence diagram must be “User”. In this case, the constraint is 

expressed using first order logic (as indicated by the language qualifier “fo:”) but any constraint 

language is allowable. In particular, an owned constraint can be an entire macromodel – this is 

particularly meaningful for role types described next. 
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6.1.3 Role types 

In Figure 6.2, some of the tags for model roles have a multiplicity specifier such as “[*]”. This 

represents a model role type rather than a model role. The multiplicity can be expressed more 

generally as [upperLimit] or [lowerLimit..upperLimit]. A model role type represents a subset of 

 
 
 

Figure 6.2. Another view of TransportationSystem. 

RoadScenario  

TransportationSystem  : UML 
<<+view>> {inc} 

high:implements 

RoadCondition: CD 

Class [*] 

*:OD [*] 

RoadControl 

M1 (CondCase) : SD 

MRoad : CD 

M2 (CondCase)  : SD 

M3 (CondCase) : SD 

M4 (CondCase) : SD 

TrafficFlow : AD 

Weather : AD 

low:implements 

rain:implements 

snow:implements 

implements 

objectsOf 

instanceOf 

* 

theCond 

*:OD 
+ 

CondCase:SD [*] 

:AD [*] 

Intersection  : 
SD 

CrossWalk : 
SD 

Self 

theCond 
:Class 

GenCase:SD 
submodelOf 

ownedBehavior 

GenCase:SD 

*:Interaction 

SDof 

theCond = “highTraffic” 

theCond = “lowTraffic” 

theCond = “rain” 

theCond = “snow” 
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model roles within its containing macromodel and provides a way to classify model roles in 

order to efficiently express role constraints they have in common. For example, CondCase 

represents a subset of the sequence diagrams within the macromodel RoadControl. If the name 

of a role type is omitted and only a model type is given in the tag then it is the anonymous role 

type representing the set of all model roles of that type within the macromodel. For example, 

:AD [*] represents the set of all activity diagrams in RoadScenario. A model role indicates that 

it is in a role type by adding the role type name in parentheses following the model role name in 

the tag. For example, we have M1 (Cond) : SD, M2 (Cond) : SD, etc. The set of model roles 

must conform to the multiplicity of the role type. 

 

A line (or diamond for the n-ary case) with a model role type on one or more of its ends 

represents a role relationship type. The multiplicity is given on its endpoints in the same manner 

as for a UML associations. The multiplicity is assumed to be “1” if it is omitted. Role 

relationship types can also be anonymous (i.e., type only) and relationships designate their 

membership in a role relationship type in the same manner as model roles. Note that if a model 

role is on an end of a role relationship type then it is treated like a model role type with 

multiplicity “1” with regard to the relationship type multiplicity. Thus, Figure 6.2 says that 

RoadControl contains a set of sequence diagrams called CondCase, each of which has an 

objectsOf  relationship to an unrealized object diagram in the anonymous macromodel and an 

implements relationship to a RoadScenario activity diagram.  

 

Any owned constraints in a role type or role relationship type are assumed to be replicated for 

each of its instances. Thus, the constraints owned by the type are taken to apply to any instance 

of the type. An owned constraint expressed as macromodel in a role type is a graphical way to 
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express constraint reuse. For example, in Figure 6.2, the role type CondCase contains an owned 

macromodel representing a constraint that should hold for each of its instances. In this 

macromodel, the instance is referred to using the pseudo role Self, the associated generator 

theCond is shown as an element role and additional roles GenCase and an unrealized Interaction 

are present as well. The dashed border on a role indicate that they are actually external to the 

CondCase and that they are just shown within its box to allow a constraint to be expressed. The 

constraint expressed by the macromodel is that each CondCase is a submodel of GenCase and is 

generated from theCond by composing the transformation ownedBehavior with SDof. Note that 

only pure relationships can be used in an owned macromodel. Using an macromodel in this way 

is semantically equivalent to replicating it for each instance of CondCase by using the bindings 

of the local roles Self and theCond for each instance. In the instances of CondCase we see 

another notational convention – the value of generator theCond is given textually as an attribute 

rather than graphically.  

 

To summarize, role types are an abstraction mechanism that both add information about the 

intent regarding how the macromodel is structured and simplifies the macromodel by allowing 

common information to be expressed for all the elements of a similar set of roles. 

6.1.4 Relationships to model elements 

In some cases it is useful to refer to particular model elements or sets of model elements directly 

from within a macromodel. For example, in Figure 6.2, the classes of RoadCondition : CD 

indicate different conditions that could hold in traffic context. The dashed arrow from the 

element set Class representing the set of classes in RoadCondition to CondCase indicates that 

the classes are generators for the sequence diagrams. Thus, each class of RoadCondition 

generates a unique corresponding CondCase sequence diagram. This kind of relationship is 
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fundamental to the expression of decomposition criteria discussed in Chapter 7.  Note that these 

representations of model elements are only intended for expressing model role constraints that 

require reference to model elements and are not intended for expressing the detailed content of 

particular models. The latter activity occurs at the model level rather than the role level and 

utilizes the particular notations that are appropriate for the model type. 

6.1.5 Ground and general macromodels 

Recall that in Chapter 2 we made a distinction between the project level and the method level 

and noted that model roles and role constraints can exist at both levels. Correspondingly, 

macromodels can also be used at either level to express the intended roles and their constraints. 

However, to understand the differences between these two uses of macromodels we must 

elaborate this distinction further.  

 

The project level corresponds to the actual set of models used in a particular project. We will 

assume that each project has a macromodel that describes the project’s intended structure and 

contains a model role symbol for each required model in the project. Furthermore, each such 

model role symbol is mapped to the model that plays the role within the project and this allows 

conformance to modeler intent to be assessed. We will call a macromodel with such a mapping, 

a ground macromodel. Despite its distinguished role within a project, the project macromodel 

should be a model like any other within the project in the sense that it evolves over time and 

when the project is non-conformant to it then a valid way to resolve this is to change the 

macromodel.  

 

The method level spans many possible occurrences of a method and hence there is no specific 

set of models that are mapped to model roles. Thus, we consider a macromodel used at this level 
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to be a general macromodel. In the same way that a project may represent an occurrence of a 

method specialized to the needs of the project, the project macromodel may be a specialization 

of a general macromodel containing generalized expressions of intent regarding models. Thus, 

general macromodels are used to define classes of similar ground macromodels. However it is 

important to note that although the ground-general macromodel relationship seems like an 

instance-type relationship it is actually a specialization relationship.  

 

Figure 6.3 shows a case where the ground macromodel TransportationProject is taken to be a 

specialization of a generalized macromodel Dev. The notational convention is that a general 

macromodel has the stereotype “<<gen>>” in its tag. Dev defines a general development 

process that identifies two singleton model role types,  ReqSpecification and Design related by a 

relationship RD and the set of model roles PlatformImpl related to Design by a set of 

relationships ID. Note that the model and relationship types given are abstract.  

   

The ground macromodel TransportationProject specializes Dev. The element 

TransReq(ReqSpecification) : UML indicates that the model role TransReq specializes 

ReqSpecification. All of the abstract model and relationship types in Dev are concretized in 

TransportationProject in this way.  In general, a specializing macromodel inherits all of the 

model roles or relationships (and sets) in the more general macromodel and can specialize these 

further as well as adding new model roles and relationships.  
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Specializations of a role/ relationship must satisfy the usual conformance condition that the 

specialization is a more constraining role/relationship in terms of model/relationship type and 

multiplicity.  The difference with a ground macromodel is that it must specialize all the model 

roles and relationships in the general macromodel. TransportationProject satisfies these 

conditions – it correctly specializes the elements of Dev as well as adding various other model 

roles and relationships. 

 

Figure 6.3. A general macromodel and an instance of it. 

Dev <<gen>> 

RD: refinementOf 

ReqSpecification: 
Model  

Design: Model 
 

PlatformImpl: 
ImplModel 

 

ID: refinementOf 

1..* 

TransportationProject (Dev) {inc} 

TransportationSystem (Design) :UML 
<<+view>> {inc} 

TransReq 
(ReqSpecification) 

: UML 

TSJ2EE (ImplModel) 
:Java 

TSNet (ImplModel) 
:C++ 

(RD):UMLRefines 
I1 (ID):JavaUML I2 (ID):C++UML 
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6.1.6 Type diagrams 

A macromodel includes references to model and relationship types and these too can be shown 

in a diagram that depicts this part of a macromodel. Figure 6.4 is a type diagram showing the 

types portion of the macromodel depicted in Figure 6.1. A type diagram is shown simply as a 

UML style class diagram with no multiplicities. Types have stereotype “<<type>>” in their tag. 

For clarity, Figure 6.4 omits the stereotypes of relationship types. Relationship type arrow 

conventions are the same as for relationships in a macromodel diagram. Metamodel morphisms 

are shown with stereotype “<<morphism>>”.  Note that in the macromodel, the concrete type 

elements depicted in this diagram contain an attribute (not shown) that references the 

metamodel artifacts defining these types. 

 

 

Figure 6.4. The type diagram corresponding to Figure 6.1. 

<<type>> 

Model 
<<type>> 

UML 

CD 

<<type>> 

Orgchart 
<<type>> 

OD 

<<type>> 

SD 

<<type>> 

objectsOf 

caseOf 

actorsOf 

submodelOf 

<<morphism>> 

<<morphism>> 

<<morphism>> 
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6.2 Formalization 

6.2.1 Abstract syntax 

Figures 6.5 to 6.7 show the metamodel for the macromodeling language. MacromodelKind is 

the abstract element type that represents all variants of macromodels. Each instance consists of a 

set of ContainedMember elements. When a macromodel is not contained in another then it is a 

RootMacromodel and as discussed above, it can either be general or ground and this is indicated 

by the attribute use. A ground macromodel contains elements that map to the actual model and 

relationship artifacts in the project. Different subclasses of ContainedMember exist for model 

roles, role relationships and macromodels and each of these have their ground and “type” 

versions shown in Figure 6.6. Thus we have ModelRole/ModelRoleType, 

SimpleRel/SimpleRelType and ContainedMacromodel/ContainedMacromodelType. A 

relationship has EndType elements where it attaches to its endpoints. In addition to these, a 

ModelRole can have ElementSet and ElementRole elements showing the elements within a 

model as in Figure 6.2. A View is a special kind of member that “wraps” other members to turn 

them into views as defined in Chapter 5. Finally, in Figure 6.7 we have the elements that 

represent model and relationship types.  

 

We defer any further formal description of macromodel syntax to the specification in Section 

6.4. Instead we turn to the issue of defining the formal semantics.  
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Figure 6.5. The core abstract syntax of the macromodeling language. 

RootMacromodel
use : {general, ground}

MultiplicityElement

lowerMultiplicity : int

upperMultiplicity : unlimitedNatural

MacroRel

MacroRelType

MacromodelKind ContainedMember
*1

+contents *
+in

1

Member

0..1+/parent 0..1

ContentConstraint
1..*

*

1..* +owns

*

ContainedMacromodelType

ContainedMacromodel

0..1

+grounds

0..1

{redefines specializes}

Classifier

*
*

*

specializes

*
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Figure 6.6. The elements contained in a macromodel. 

Mapping Artifact Model Artifact

MultiplicityElement

lowerMultiplicity : int

upperMultiplicity : unlimitedNatural...

ContentConstraint

ContainedMacromodelType

ContainedMacromodel

0..1+grounds 0..1

{redefines specializes}

ModelRole

model : modelReference

RelType

/ isTransformation : Boolean...

isRealized : Boolean

EndType1..*1

+end

1..*1
{ordered}

View

isComplete : Boolean

0..10..1
+/parentView

+cc
{redefines role constraint}

0..*
+generator

0..*

ContainedMember

1

+member
1

0..1

1

+view

0..1

+member

1

Sum

MacroRel

MacroRelType

0..1

+grounds

0..1

{redefines 

grounds}

SimpleEnd 1*

+role

1

{redefines member}

*
SimpleRel

mapping : modelReference

1..*1

+end

1..*

{redefines end}

+rel

1

SimpleRelType

0..1 +grounds0..1
{redefines 

specializes}

SimpleEndType

0..1
+grounds

0..1

{redefines 

specializes}

1..*

+end
1..*

{redefines end}

ElementSet

ElementRole

ModelRoleType
isRealized : Boolean

0..1
+theModel

0..1

1 *

+in

1 *
0..1

+grounds
0..1

{redefines 

specializes}

0..1

*

+in

0..1

*
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6.2.2 Macromodel semantics  

In this section we give the semantics for ground macromodels . Our focus in defining the 

semantics is to identify the ways in which a macromodel expresses modeler intent and 

what the conditions of its satisfaction are. Thus we are interested in conformance to 

modeler intent.  First we define the notion of a configuration. 

 

Definition 6.1. Configuration. For a project P we define a configuration δ of P as 

consisting of a pair 〈KP, ∆P〉 where KP is the project macromodel and ∆P is the partial 

function from the realized ModelRole or SimpleRel elements KP to the model and 

mapping artifacts that they reference.  

 

Figure 6.7. Model type related elements. 

Metamodel Artifact

Morphism source

target

ModelType

metamodel

ElementSet

ModelRelType
isMapped : Boolean

isPure : Boolean

isTransformation : Boolean...

relator metamodel

SimpleRelType

1

*

+type1

*

ModelRelEndType
1..*1 +end
1..*

{ordered}

1

11

1* 1*

SimpleEndType

1

*

+type
1

*

Classifier

isAbstract : Boolean

** *

specializes

*

ModelRoleType
isRealized : Boolean

1

*

+type
1

*
1 *

+in

1 *

ElementType

*

*

*

*
1

*

+type
1

*

ElementRole

0..1

*

+in

0..1

*

1
+type

1
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Now, the conditions for the conformance of a configuration can be formally defined. 

 

Definition 6.2. Conformance conditions. We say that configuration δ = 〈KP, ∆P〉 is 

conformant to the modeler intent expressed in KP iff the following three conditions hold: 

C1. ∆P is a total bijective function 

C2. KP  conforms to its specialization constraints 

C3. ∆P conforms to KP 

 

The semantics of a general macromodel are based on the rules for specializing it and 

these are implicit in the description of condition (C2).We now discuss each of these 

conditions in detail. 

C1: ∆P is a total bijective function 

The presence of a realized ModelRole or SimpleRel element in KP represents an 

existential intent on the part of the modeler since this means that it is expected to be 

played by an artifact within P.  ∆P is defined to be a partial function because it may not be 

the case at all times in the project that every such element has a corresponding player. 

When this is the case, the existential intent of the modeler is violated and thus, the 

condition that ∆P is a total function says that δ conforms to existential intent. 

 

We also expect ∆P to also be injective and surjective (i.e., bijective). The fact that it is 

injective means that the role of an artifact within the project is represented by a unique 

symbol within the macromodel – although, in a macromodel diagram, this may appear 

multiple times and in multiple diagrams. The fact that it is surjective means that the role 
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of every artifact in the project is represented within the macromodel. These requirements 

are not an issue of conformance to modeler intent but rather a condition of the correct 

usage of project macromodels. 

C2: KP conforms to its specialization constraints 

The ContainedMember elements within a macromodel are classifiers and hence a 

member may specialize another member. There are constraints on what constitute valid 

specializations. We refer to these constraints as specialization constraints and KP must 

conform to them. Although specialization constraints are well-formedness constraints for 

macromodels, we distinguish them from other well-formedness constraints because in 

this case the specification of one part of the macromodel (e.g., a model role type) is 

intended to constrain another part of the macromodel (e.g., a model role). In this sense, 

specialization constraints are constraints that a user of a macromodel specifies and hence 

comprises part of the modeler intent. Thus, a violation of specialization constraints 

constitutes a violation of the modeler intent while a violation of the other well-

formedness constraints of the macromodeling language just implies that the model is ill-

formed as a macromodel. 

 

The conformance conditions for specialization constraints are given in Figure 6.8. Here, 

MemRT is the set of members in K that specialize RT either directly or indirectly, RMemRT 

are the endpoint tuples of the relationships in MemRT and EMemi[r1, …, ri-1, ri+1, …, rn] is 

the set of endpoints of type RTi when we fix the remaining n-1  endpoints to r1, …, ri-1, 

ri+1, …, rn. 
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Figure 6.8. Specialization constraint conformance conditions. 

 

For every MacromodelKind K where either K = KP or K is in KP at any depth, 

For any specializable member RT referenced within K,  

For ContainedMacromodelType RT, the following must hold: 

• The set of RT contained macromodels must conform to the multiplicities of RT 

o lowerMultiplicity(RT) ≤ | MemRT| ≤ upperMultiplicity(RT) 

For ModelRoleType RT,  the following must hold: 

• The model types of all model roles in RT must specialize the model type of RT 

o ∀r ∈ MemRT · specializes(type(r), type(RT)) 

• The set of RT model roles must conform to the multiplicities of RT 

o lowerMultiplicity(RT) ≤ | MemRT| ≤ upperMultiplicity(RT) 

For RelType RT, with EndType elements RT1, …, RTn, the following must hold: 

• If RT is a SimpleRelType then the model types of all model roles in an endpoint of 

RT must specialize the model type of the endpoint 

o ∀i ∈ {1, …, n}∀r ∈ MemRTi · specializes(type(role(r)), type(RTi))  

• The set of model roles in an endpoint of RT must conform to the multiplicities of the 

endpoint 

o ∀i ∈ {1, …, n}∀r1 ∈ MemRT1, …, ri-1 ∈ MemRTi-1, ri+1 ∈ MemRTi+1, …, rn ∈ 

MemRTn ·  

lowerMultiplicity(RTi) ≤ | EMemi[r1, …, ri-1, ri+1, …, rn]| ≤ 

upperMultiplicity(RTi) 

 

Where,  

MemRT = {m | in(m) = K ∧ TC(specializes(m, RT))} 

RMemRT = {〈r1, …, rn〉 | ∃x ∈ MemRT ∀i ∈ {1, …, n} · end(x, ri) ∧ ri ∈ MemRTi} 

EMemi[r1, …, ri-1, ri+1, …, rn] = {r | 〈 r1, …, ri-1, r, ri+1, …, rn〉 ∈ RMemRT}  
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C3: ∆P conforms to KP  

To define the formal conformance relationship between ∆P and KP we proceed by first 

translating KP to an equivalent first order theory 〈ΣK, ΨK〉. Then we construct a particular 

interpretation J of this theory so that (∆P conforms to KP) � J � ΨK.  

 

Note that the contained macromodel structure is ignored for this conformance 

relationship because it only concerns the conformance of the project artifacts with the 

role constraints. Figure 6.9 shows an example of the translation of KP applied to the 

macromodel Toll in     Figure 6.1. First consider the construction of the signature ΣK. 

Each model type and relationship type T has a corresponding sort ST representing artifacts 

with signature ΣT  and each realized model role and relationship C is represented by a 

constant RC of the appropriate sort. For example, RTollStation: SOD represents the model role 

TollStation of type OD.  

 

The type and role constraints that apply to these roles are represented separately as unary 

predicates on these sorts. For model types, a unary predicate TCT ⊆ ST represents the set 

of type constraints ΨT.  For relationship types, ST  represents the relator model instances 

and we define a unary predicate TCT  ⊆ ST  to represent ΨT. 
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Figure 6.9. Result of applying translation algorithm to macromodel in Figure 6.1. 

sorts  SobjectsOf, ScaseOf, SOD, SSD, SUML, SsubmodelOf[f:ODUML] , … 

pred TCobjectsOf: SobjectsOf 

 TCcaseOf: ScaseOf 

 TCsubmodelOf[fODUML] : SsubmodelOf[f:ODUML] … 

 TCOD: SOD 

 TCSD: SSD 

 RCBuySingleTicket : SSD 

func  pod: SobjectsOf → SOD 

 psd: SobjectsOf → SSD 

 psd1: ScaseOf → SSD 

 psd2: ScaseOf → SSD 

 RBuySingleTicket, RBuyMonthlyTicket, RTollTransaction: SSD 

 RTollStation: SOD 

 RTransportationSystem: SUML 

 Rf1, Rf2 : ScaseOf 

 +: SOD × SOD → SOD 

constraints 

∃f3, f4: SobjectsOf, buySingleTicket, buyMonthlyTicket: SOD, f5 : SsubmodelOf[f:ODUML], …  

TCOD(buySingleTicket) ∧ TCOD(buyMonthlyTicket) ∧  

TCOD(RTollStation) ∧  

TCSD(RBuySingleTicket) ∧ RCBuySingleTicket(RBuySingleTicket) ∧ TCSD(RBuyMonthlyTicket) ∧  

TCSD(RTollTransaction) ∧  

TCcaseOf(f1) ∧ psd1(f1) = RBuySingleTicket ∧ psd2(f1) = RTollTransaction ∧ 

TCcaseOf(f2) ∧ psd1(f2) = RBuyMonthlyTicket ∧ psd2(f2) = RTollTransaction ∧ 

TCobjectsOf(f3) ∧ psd(f3) = RBuySingleTicket ∧ pod(f3) = buySingleTicket ∧ 

TCobjectsOf(f4) ∧ psd(f4) = RBuyMonthlyTicket ∧ pod(f4) = buyMonthlyTicket ∧ 

RTollStation = buySingleTicket + buyMonthlyTicket 

TCsubmodelOf[fODUML](f5) ∧ πsub(f5) = RTollStation ∧ πwhole(f5) = RTransportationSystem 

… 
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Each model role or relationship C of type T may also have (or participate in) additional 

role constraints, either directly or through inheritance from their role types. Thus, we add 

a unary predicate RCC ⊆ ST to represent these when they are not expressed using existing 

relationship types. For example, BuySingleTicket:SD contains an additional role 

constraint and so we have the predicate RCBuySingleTicket ⊆ SSD.  

 

For each use of the model sum operator “+” we need to add a version with the 

appropriate signature to ΣK. In this case, we are only summing OD models into OD 

models. Finally, the metamodel morphisms of relationship types correspond to functions 

between the appropriate sorts to represent the reducts. For example, the objectsOf 

relationship type is represented by sort SobjectsOf, role constraints RCobjectsOf and the two 

reduct functions pod: SobjectsOf → SOD and psd: SobjectsOf → SSD. 

 

The separation of sorts and constants (representing artifacts and roles, respectively) from 

the constraints they must satisfy allows us to represent the fact that a project can contain 

models and mappings that are not necessarily conformant to their constraints. For 

example, constant RTollStation : SOD is assigned to a model with signature ΣOD that plays this 

role and this model is conformant to its type constraints when TCOD(RTollStation) holds. 

 

Now consider the construction of the constraints ΨK. Since an unrealized model role 

means “there must exist such a model” we represent unrealized model roles as 

existentially quantified variables. Unrealized or pure relationships are treated similarly. 
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Thus ΨK is actually constructed as a single sentence that begins with a set of existentially 

quantified variables for the unrealized model roles and relationships. The body of the 

sentence places constraints on these variables and the constants representing the realized 

model roles and relationships.  

 

Each relationship translates to a clause that asserts that the relator maps to the correct 

endpoint models via the reducts and that the relator satisfies its constraints. For example, 

the constraint expressed by f1:caseOf  in Figure 6.1 produces RCcaseOf(Rf2) ∧ psd1(Rf2) = 

RBuyMonthlyTicket ∧ psd2(Rf2) = RTollTransaction. Each model role is translated to a clause that 

asserts that it satisfies its type and role constraints. Thus, BuySingleTicket:SD produces 

TCSD(RBuySingleTicket) ∧ RCBuySingleTicket(RBuySingleTicket). Each model sum is produces a 

corresponding sum expression such as RTollStation = buySingleTicket + buyMonthlyTicket. 

The translation algorithm described below gives additional details that are not illustrated 

in this example. Note also that since Toll is a view, there is an implicit submodel 

relationship between each constituent model and theModel. For conciseness we only 

show one of these in Figure 6.8 and put ellipses to indicate the remaining ones. 

Translation algorithm 

Figures 6.10 to 6.13 show the full algorithm used for the translation. In the algorithm we 

translate KP to FO+ theory 〈ΣK, ΨK〉. Note that quantification over macromodel elements 

is assumed to be over the elements of KP. In step 1 we initialize the namemap mapping 

that we build incrementally in the algorithm. The purpose of this mapping is to maintain a 

correspondence between the elements in the macromodel and the names we use for them 



www.manaraa.com

157 

 

in the theory being constructed. Steps 3-7 build the components of ΣK that represent the 

model and relationship types used by the macromodel. Steps 3-5 add the sorts and unary 

predicates for types and steps 6-7, define the function between sorts to represent the 

reducts for relationship types.   

 

Steps 8-30 build the parts of 〈ΣK, ΨK〉 that represent the content of the macromodel itself. 

Steps 8-9 add unary predicates to hold owned role constraints if they are present. Step 13 

adds constants to ΣK for each realized ModelRole and SimpleRel element in KP. Thus, 

each constant represents an artifact that must be in project ∆P. Steps 8-9 add the unary 

predicate representing role constraints if needed. The constraints ΨK are then constructed 

as a single constructed sentence X. As discussed above, each unrealized ModelRole or 

SimpleRel element and each pure SimpleRel element is expressed as an existentially 

quantified variable and these prefix X (steps 12-16). Note that we use the helper function 

MakeUniqueName to construct a globally unique name. We need this because pure 

relationships do not have a name and unrealized members may not either. Steps 20 – 26 

construct the conjuncts of X to express the fact that type constraints and role constraints 

must be satisfied. Each Sum element or decomposition View yields a conjunct that 

computes the sum of the flattened content (using sub algorithm FlattenMacromodel) of a 

macromodel since we assume that sum ignores the hierarchical structure (Steps 24-26). 

An ElementRole element E in a ModelRole M expresses the constraint that M contains an 

element of a given type and name (Steps 27-28). Finally, if a member contains an owned 
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constraint expressed as a macromodel this is translated and added to X. We discuss the 

details of the sub algorithm TranslateOwnedMacromodel next.  

 

Recall that an owned constraint expressed as a macromodel only contains pure 

relationships and may have model roles with local names. The idea is that this 

macromodel is instantiated (and replicated) for each binding of the local names. If the 

owning member that is a type (e.g., ModelRoleType, etc.) then it is replicated once for 

each instance of the type. The algorithm proceeds for each instance by first building a 

mapping localmap that defines a correspondence between the local names and the 

macromodel elements that instantiate them (steps 1-20). Then it uses the namemap 

mapping from the main algorithm TranslateMacromodelToFO to add the clauses 

expressing the constraints in the macromodel (steps 21-34). 

 

It should be apparent from the algorithm that each member of KP introduces a constant 

number of elements into ΣK and ΨK; thus the complexity of algorithm is O(n) where n is 

the number of members in KP. 
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Algorithm. TranslateMacromodelToFO 

Input: RootMacromodel KP 

Output: Theory 〈ΣK, ΨK〉 

1: 
ΣK = ∅, ΨK = ∅, namemap = ∅ 

2: // Build the signature from the macromodel 

3: for every ModelType or ModelRelType T referenced by a ModelRole or SimpleRel 

element and with associated metamodel 〈ΣT, ΨT〉:  

4:     add sort ST to ΣK 

5:     // predicate representing type constraints 

    add unary predicate TCT :ST to ΣK 

6: for every metamodel morphism f:〈ΣT, ΦT〉→〈ΣT1, ΦT1〉 denoted by a 

ModelRelEndType element:   

7:     add a function pf:ST1→ST  to ΣK 

8: for every ModelRole or SimpleRel element C with type(C) = T and owned role 

constraints:  

9:     // predicate representing role constraints 

    add unary predicate RCC :ST to ΣK 

10: // Build sentence X by adding quantified variables and conjuncts 

let sentence X = TRUE 

11: // for the realized const elements we add constants and for the unrealized  

// elements we add variables that will be existentially quantified 

for every ModelRole or SimpleRel element C with type(C) =T:  

12:    if ¬isRealized(C) or pure(C) :  

13:         // generate a unique variable name  

14:         let namemap(C) := MakeUniqueName(C) 

16:         add existentially quantified variable ∃namemap(C):ST as a prefix to X 

17:     else 

18:        add the constant RC:ST to ΣMX’ 

19:        let namemap(C) := RC 

20: for every ModelRole or SimpleRel element C with type(C) = T:  

21:        conjoin the following to X: 

          TCT(namemap(C)) 

 

Figure 6.10. Translation algorithm – part 1. 
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22: for every SimpleEnd element E with type(E) = f, rel(E) = R and role(E) = M : 

23:     conjoin the following to X : 

        pf(namemap(R)) =  namemap(M) 

24: for every Sum element from MacromodelKind M to ModelRole C or complete 

View V with member(V) = MacromodelKind M and theModel(V) = ModelRole C: 

25:     conjoin the following to X where {C1, …,Cn} = FlatttenMacromodel(M): 

26:         C = namemap(C1) + … + namemap(Cn) 

27: for every ElementRole C with name(C) = n and ModelRole C1 with in(C) =  C1 :  

28:     conjoin the following to X : 

        hasElementWithName(C1, n) 

29: for every ContainedMember C that has a MacromodelKind M  as an owned 

constraint: 

30:     conjoin the result of TranslateOwnedMacromodel(M, C, namemap) to X  

 

Algorithm. FlattenMacromodel 

Input: MacromodelKind M 

Output: Set FM  

1: FM = ∅ 

2: for each realized ModelRole element C such that TC(parent(C, M)):  

3:     add C to FM 

4: for each realized SimpleRel element C in M relating ModelRoles C1, …, Cn:  

5:     if (∀i  ∈ {1,…, n} · TC(parent(Ci, M ))) : add C to FM 

 

Figure 6.11. Translation algorithm – part 2. 
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Algorithm. TranslateOwnedMacromodel 

Input: MacromodelKind M, ContainedMember C, name mapping namemap 

Output: Sentence XM 

1: // first build mapping of local names to model roles 

2: localmap = ∅, XM = TRUE 

3: // add pseudo role Self to the mapping if it exists in the macromodel 

4: for every ContainedMember C1 such that grounds(C1, C): 

5:     if there exists ModelRoleType M1 in M with name = “Self” 

6:        let localmap(“Self”) := C1 

7:     if C1 is a View   

8:         // add each generator to the mapping that is in the macromodel 

9:         for every ModelRoleType M1 in M : 

10:             if there exists generator E of C with name(E) = name(M1) 

11:                 // get corresponding instance of the generator for C1    

12:                 if there exists generator E1 of C1 such that grounds(E1, E) 

13:                     let  localmap(name(E)) := member(E1) 

14:     if C1 is a RelType   

15:         // add each endtype to the mapping that is in the macromodel 

16:         for every ModelRoleType M1 in M : 

17:             if there exists EndType E of C with name(E) = name(M1) 

18:                 // get corresponding instance of the generator for C1    

19:                 if there exists EndType E1 of C1 such that grounds(E1, E) 

20:                     let  localmap(name(E)) := member(E1) 

 

Figure 6.12. Translation algorithm – part 3. 
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21: // translate macromodel 

22: // for unrealized elements or pure rels add unique existentially quantified variables 

for every ModelRoleType or SimpleRelType element M1 in M with type(M1) =T:  

23:    if ¬isRealized(M1) or pure(M1) :  

24:         // generate a unique variable name  

25:         let namemap(M1) := MakeUniqueName(M1) 

26:         add existentially quantified variable ∃namemap(M1):ST as a prefix to XM 

27: // add constraint clauses for all pure relationships in M 

28: for every pure SimpleRelType element R in M with type(R) = T:  

29:        conjoin the following to XM : 

          TCT(namemap(R)) 

30:         for every SimpleEndType E in M with type(E) = f, rel(E) = R and role(E) = M1: 

31:             if localmap(M1) exists // name is local  

32:                 conjoin the following to XM : 

                    pf(namemap(R)) = namemap(localmap(M1)) 

33:            else 

34:                 conjoin the following to XM : 

                    pf(namemap(R)) = namemap(M1) 

  

 

Figure 6.13. Translation algorithm – part 4. 
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We now construct an interpretation J of 〈ΣK, ΨK〉 as defined in Table 6.1. The idea is to 

use the  model and relationship types in the macromodel and to define J as containing all 

possible models on their signatures and define the predicates to in terms of the constraints 

in the metamodels. Then we assign the constants to the existing models in the project P. 

Thus, the only way that this set of models will be conformant with the macromodel KP is 

if J � ΨK. This gives the conformance condition that (∆P conforms to KP) � J � ΨK. 

 

Although we don’t discuss it here, we can also formulate the semantics by extending 〈ΣK, 

ΨK〉  to encode all of the above semantic conditions directly in first order logic. The 

benefit of this is that logic based tools can then be used to provide automation using 

macromodels. In Chapter 9, we use this approach to implement a subset of the 

macromodeling language semantics with the Kodkod model finder [TJ07]. 

 

6.3 Value of macromodels 

6.3.1 Impact on model comprehension 

A macromodel provides a means for the expression of modeler intent at the role level. In 

Chapter 2, we discussed how the expression of modeler intent is a type of summarizing 

abstraction of model content that helps to manage complexity and aids comprehension. 

Thus, one way a macromodel supports comprehension is by providing this level of 

abstraction on a collection of models. 
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Another key way that a macromodel supports the comprehension of model collections is 

that it allows structural information about the collection to be expressed. In particular, we 

can identify two types of structural information that a macromodel can express: the 

relationships between models and the hierarchically structure of model collections. Both 

of these types of structure support the improved cognitive manageability of information, 

particularly for decompositions of large conceptual models into collections of 

Table 6.1. Definition of the interpretation J. 

 

 

// [[ST]]J is the set of all finite FO+ structures on signature ΣT  

For each sort ST ∈ sortsK,  

        [[ST]]J = [[ΣT, ∅]] 

 

// [[TCT]]J is the set of all finite FO+ structures on signature ΣT  that satisfy ΨT  

For each predicate TCT ∈ predK,  

        [[TCT]]J = [[ΣT, ΨT]] 

 

// [[RCC]]J  is the set of all finite FO+ structures on signature ΣT  that satisfy ΨC  

For each predicate RCC ∈ predK,  

        [[RCC]]J = {m | m ∈ [[ΣT, ∅]] and m � ΨC  where T is the type of role C} 

     

// [[pf]]J is the reduct corresponding to f  

For each function (pf : ST1 → ST) ∈  funcK corresponding to a metamodel morphism f:〈ΣT, 

ΦT〉→〈ΣT1, ΦT1〉, 

        [[pf]]J = Mod(f) with domain restricted to [[ΣT, ΨT]] 

   

For each function (+ : ST1 ×  ST2  → ST) ∈  funcK,  

        [[+]]J is given by the algorithm in Section 4.4.3 

// [[RC]]J is the model or mapping artifact that plays the role C in the project. For each 

constant RC ∈ funcK,  

        [[RC]]J = ∆P(C) 
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views[M06]. A macromodel can also be used to express the intent behind decompositions 

but we defer discussion of this to Chapter 7. 

6.3.2 Support for automation and model evolution 

Macromodel semantics can be implemented by tools such as model checkers, model 

finders and theorem provers to automate the satisfaction of the semantic conditions C1-

C3. In Chapter 9 we describe a prototype developed using a model finder. In this section 

we discuss various usage modes of macromodels to support automation and model 

evolution. We illustrate these modes using the example in Figure 4.4  reproduced here in 

Figure 6.14. 

Conformance checking mode 

Using a macromodel in conformance checking mode means that the three semantic 

conditions C1-C3 are checked for satisfaction. Condition C1 must hold in order for 

condition C3 to be checkable. The example configuration δx in Figure 6.14 can be seen to 

satisfy all the semantic conditions. However, if we define configuration δx1 by removing 

all sentOver relation instances from R1 then the configuration is non-conformant because 

the constraint that sentOver is a total function from Message to Link was violated (thus, 

C3 is not satisfied).  Note that, in C3, unrealized roles result in a sentence with 

existentially quantified variables. Thus, if a model finder is used for checking 

conformance then it requires the construction of models or relationships to assign to each 

of these variables and this requires extension-to-conformance mode described next. 
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Figure 6.14. Example configuration δx . 

aCustomer:Customer

anAttendant:Attendant

aPolice:Police

anAttendant : 
Attendant

anAttendant : 
Attendant

aCustomer : 
Customer

aCustomer : 
Customer

aPolice : 
Police

aPolice : 
Police

pay fee

check for conterfeit

alert police

give change

give toll ticket

request ticket

specify fee

δx 

∆x 

R1:objectsOf 

id id id sentOver sentOver 

anAttendant : 
Attendant

anAttendant : 
Attendant

aCustomer : 
Customer

aCustomer : 
Customer

aPolice : 
Police

aPolice : 
Police

pay fee

check for conterfeit

alert police

give change

give toll ticket

request ticket

specify fee

BuyTollTicket:SD 

aCustomer:Customer

anAttendant:Attendant

aPolice:Police

Toll:OD 

Toll : OD BuyTollTicket:SD 
R1:objectsOf 

Kx 
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Extension-to-conformance mode 

In conformance checking mode, when the existential intent is not satisfied in condition 

C1 because some required models or mappings do not exist, it is still possible to do 

limited checking of condition C3 by extending the existing configuration δ to one that is 

conformant. This can be further generalized to allow existing but incomplete models and 

mappings to be extended to conformance. There are two important ways to use this 

mode: 

o Synthesis. When the set of models and mappings are extended as part of finding a 

conformant solution they are guaranteed to be consistent with the existing models and 

relationships (in the sense that all constraints are satisfied) but this does not mean that 

what they express is necessarily correct since there may be many possible consistent 

extensions. When the solution is unique, however, then it must be correct and hence 

this provides a way to do model and mapping synthesis. For example, if we consider 

the mapping in the configuration δx1 above to be incomplete (and thus, extendable), it 

is clear that there is only one possible extension that will satisfy the objectsOf 

constraints – the one that restores it to δx by putting back the missing sentOver links  

o Conformance checking with incomplete information. If a conformant extension 

cannot be found, this indicates that there is no way to consistently extend the 

incomplete models and relationships and hence the existing artifacts can be 

determined to be definitely non-conformant even though they are incompletely 

specified. For example, consider configuration δx2 constructed from δx1 by 

modifying the object diagram to remove the link from anAttendant  to aPolice. Now 
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there is no conformant extension of the mapping and we can conclude that the models 

(and partial mapping) are definitely non-conformant with the constraint that the 

objectsOf relationship holds between the models. 

 

The examples in both these cases show that it is possible to work usefully with 

incomplete (or even non-existent) mappings. This is significant since the creation of 

mappings is often given little attention in the modeling process because it requires 

significant additional effort. 

Change propagation mode 

Say that configuration δ satisfies the semantic conditions. Now assume a change is made 

to a subset of the content in the models and mappings to form δ1 that is no longer 

conformant. In this case, we want to find a minimum “repair” of the remainder to form a 

new configuration δ2 that is conformant. In general, the minimum repair may not be 

unique but there always exists a unique (possibly empty) subset that is common to all 

minimum repairs. This subset represents the change that is propagated due to the 

constraints expressing modeler intent. As an example, consider that we begin with 

configuration δx and then construct δx1 by changing the mapping R1 to remove all the 

sentOver links as before. Now, every minimal repair that preserves this changed mapping 

must remove all links in Toll and all messages in BuyTollTicket. Thus, these changes are 

the result of propagating the effect of the change to R1. 
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Top-down modeling mode 

Another mode of use for a macromodel is to support model evolution by using it to drive 

top-down modeling. In this case, the definer can use the macromodel to define the 

intended structure of a collection of models before they exist and hence provide a 

template for modelers to follow. For example, if configuration δx is missing both models 

and the mapping then the macromodel Kx still provides information about what these are 

intended to be.  

6.4 Macromodel language specification 

This section is a reference guide to the macromodeling language and provides detailed 

descriptions of the elements in the metamodel (Figures 6.5 – 6.7). Each subsection 

describes one or more related types of elements, gives their well-formedness conditions 

(“Constraints” subsection) and their concrete syntax (“Notation” subsection).   

6.4.1 MacromodelKind and its subclasses 

A MacromodelKind consists of a set of ContainedMember elements which represent the 

different kinds of constituents of a macromodel. A RootMacromodel has no container and 

could be used either as a general macromodel (use = general) or as ground macromodel 

for a particular project (use = ground). A ContainedMacromodel is one that is within 

another macromodel and ContainedMacromodelType represents a set of contained 

macromodels with upper and lower multiplicity bounds within the containing 

macromodel. 
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Constraints 

// A MacromodelKind cannot contain itself 

∀m:MacromodelKind · ¬TC(contents(m, m)) 
 

 

// Only a MacromodelKind can specialize a MacromodelKind 

    ∀m:MacromodelKind,r:Member ·specialize(r, m) ⇒ ∃m1:MacromodelKind · m1 = r 
 

 

// Nothing can specialize a ground RootMacromodel 

    ∀m:RootMacromodel · use(m) = ground ⇒ ¬∃m1:MacromodelKind · specialize(m1, m) 
 

 

  

 

The constraints for macromodel specialization are given in Section 6.2.2. 

Notation 

A macromodel is represented as a box with a thick border containing its constituent roles. 

A box with a single compartment containing a macromodel-tag is a reference to a 

contained macromodel detailed in another diagram. If there are multiple compartments 

there are several additional notational options: 

• An optional macromodel-tag is found in the top compartment of the box. If a 

macromodel-tag is not given or if the macromodel-name is omitted, then the 

macromodel is considered anonymous.  

• The contents of a macromodel can optionally appear within a compartment of the 

box. In this case, the compartment is assumed to show the complete contents of 

the macromodel unless the string “{inc}” appears in the macromodel-tag 

indicating that there is additional content not shown in the diagram.  

• The contents of a macromodel can optionally be shown using links with a 

diamond arrow head from the boxes representing constituents to a macromodel 

box. In this case, the set of links is assumed to show the complete contents of the 
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contained macromodel unless the string “{inc}” appears in the macromodel-tag 

indicating that there is additional content not shown in the diagram.  

Only the compartment method of showing content can be used to show a contained 

macromodel that is empty (i.e., the macromodel is complete but has no contents).  In 

general, the compartment method is the preferred approach and the link method is only 

used in cases where it is visually difficult to use the compartments – e.g., if there are 

overlapping contained macromodels.  Figure 6.15 illustrates the variations here. 

TransportationProject is a root macromodel showing the incomplete content using a 

compartment. Within TransportationProject there is the contained macromodel Toll 

using the compartment method, the contained macromodel Family Travellers using the 

link method, a referenced macromodel Roads and an anonymous macromodel consisting 

of two object diagrams. 

 

If the macromodel specializes another macromodel then a generalization section is 

included in the macromodel-tag to reference the specialized macromodel. Specialization 

of macromodels is indicated by specifying the more general macromodel in parentheses. 

The attribute use = general is indicated with the stereotype <<gen>>, otherwise the 

macromodel is assumed to be ground. Figure 6.3 shows a use of a general macromodel 

and a specialization of it. Figure 6.17 shows a macromodel type and a specialization of it. 

The other stereotypes <<view>> and <<+view>> are discussed further in the Section 

6.4.8. 

tag format: 

<macromodel-tag> ::= [<macromodel-name>]  

                                     [<generalization>]  
                     [<multiplicity>] 
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                     [<stereotype>] 

                     [“{inc}”] 

<stereotype> ::= [<macroview-stereotype>][“<<gen>>”] 

<macromodel-name> ::= STRING 

 

 

 

6.4.2 Member, ContainedMember 

Member is an abstract metaclass that defines a type of role within a macromodel. A 

Member asserts a set of role constraints that express modeler intent. Semantically a role is 

played by an entity – the type depends on the kind of role. Conformance semantics 

require that the entity playing the role satisfy the constraints owned by the role type. 

More specific semantics are given for the concrete subtypes.  

 

 

Figure 6.15. Examples of macromodels. 

TransportationProject {inc} 

Toll <<view>> 

theModel 

objectsOf objectsOf 

+ 

f6:actorsOf Human Resources: 
OrgChart 

TransportationSystem: 
UML 

Toll Station: OD Roads 

Buy Monthly Ticket: SD Buy Single Ticket: SD 

*Buy Monthly Ticket: 
OD 

*Buy Single Ticket: 
OD 

Family Travellers <<view>> 

Family Vehicles: CD 

theModel 
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Constraints 

// isAnonymous is TRUE iff no name is given 

∀z:ContainedMember · isAnonymous(z) � DEFINED(name(z)) 
 
 

 

// If this specializes another role type then the multiplicities must at least as restrictive 

∀z, z1:MultiplicityElement, ContainedMember·  specializes(z,z1) ⇒ upperMultiplicity(z) ≤  

upperMultiplicity(z1) ∧ lowerMultiplicity(z)  ≤ lowerMultiplicity(z1) 

 

Notation 

The notation is given for the concrete subtypes. Since a MacromodelKind is a namespace, 

the name can be the same as in other MacromodelKind. The name can also be omitted 

and then it is an anonymous role type. The rules for anonymous roles depends on the 

concrete subclass. A role can optionally specialize another role. Specialization is 

indicated by specifying the name of the more general role in parentheses as part of the 

role tag. The precise position of this is given by the concrete subclasses. 

 

tag format: 

<generalization> ::= “(“ <role-name> “)” 

<role-name> ::= STRING 

 

6.4.3 ModelRole, ModelRoleType 

A ModelRole represents the use of a model with a given model type for a particular 

purpose. If the model role is realized (isRealized = TRUE) then it should contain a 

reference to the model in the project that plays it. If it is unassigned then this is 

considered to be a violation of the existential intent that such a model must exist in the 

project. To be conformant with modeler intent this model must conform to the model 

type and the role constraints associated with the model role.  
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A ModelRoleType represents a set of model roles within its containing macromodel with 

size that is within the specified multiplicity. A model role is a “ground” model role type 

in the sense that its multiplicity is “1” and the multiplicity is “1” for every macromodel in 

its containment path to the root macromodel and the root has use = ground. A ground 

model role type cannot have any specializations.  Note that it is possible for the 

multiplicity of a model role type to be “1” and it not be ground. For example in Figure 

6.3, ReqSpecification and Design have multiplicity “1” but are not ground since they 

occur in a general macromodel.. A model role type element also contains ElementSet and 

ElementRole elements and is a namespace for these.   

Constraints 

// For a ModelRole, the lowerMultiplicity and upperMultiplicity must be 1 

∀z:ModelRole·  lowerMultiplicity(z) = 1 ∧  upperMultiplicity(z) = 1  

 

 

The constraints for model role type specialization are given in Section 6.2.2. 

Notation 

A ModelRole is represented as a box with a thin border containing a model-tag that 

identifies the role type, its generalization and model type. Starting the tag with an asterisk 

indicates that the isRealized attribute is set to FALSE. When a role is unrealized, its name 

is optional and if missing, the role is referred to as anonymous. The name/type pairs for 

model roles are unique within the root macromodel. If multiple occurrences of the same 

name/type pair occur in a macromodel diagram, they refer to the same model; however, 

different anonymous model roles are considered to represent distinct models. 
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A ModelRoleType is represent as a model role except that it has a multiplicity specifier. 

The name of a role type is unique only within the macromodel in which it occurs. If the 

name is missing, the role type is referred to as anonymous and is identified by its model 

type – i.e., it is understood to be the entire set of model roles of the given model type 

occurring in its containing macromodel. Thus, there can only be at most one anonymous 

model role type with a given model type.  

 

Figure 6.16 shows various examples of model role types. The anonymous :OD [1..*] 

indicates the set consisting of all object diagram model roles in the macromodel and it 

also asserts that there must be at least one of them. Buy Monthly Ticket specializes the set 

Basic and is related to two unrealized model roles, one of which is anonymous. 

 

tag format: 

<modelroletype-tag> ::= [<role-name>] 

                       [<generalization>] 

                       “:”<model-type>  

                       <multiplicity>  

                       [<view-stereotype>]                   

<modelrole-tag> ::= ((“*” [<role-name>] ) | <role-name>)  

                    [<generalization>] 

                    “:” <model-type> 

                              [<view-stereotype>]                   
<role-name> ::= STRING 

<model-type> ::= STRING 
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6.4.4 SimpleRel, SimpleRelType, RelType 

A SimpleRel identifies an intended relationship between a tuple of model roles. A 

relationship expresses a set of constraints that must hold between a tuple of models and 

optionally, a mapping that relates their content. The relationship carries a reference to a 

ModelRelType element representing a relationship type. If the relationship is realized 

(isRealized = TRUE) then it should contain a reference to the mapping (i.e., relator 

model) in the project. If it is unassigned then this is considered to be a violation of the 

existential intent that such a mapping must exist in the project. In addition, since every 

role can have owned role constraints, these are considered to be conjunctively combined 

with the constraints in the relationship type and with the constraints in SimpleRelType 

elements that this relationship (optionally) specializes. The tuple of models and mappings 

conforms to the relationship iff they satisfy this resultant constraint. 

 

 

 

Figure 6.16. Examples of notation for model roles and role types. 

Buy Monthly Ticket (Basic): SD 

*Buy Monthly Ticket: OD *:OD 

objectsOf objectsOf 

:OD [1..*] 

Basic : SD [*] 
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A SimpleRelType represents a set of SimpleRel elements within a macromodel. The 

endpoints specify model role types and can give the multiplicities (multiplicity “1” is 

assumed if omitted). A RelType is an abstract class representing sets of relationships 

between model roles. 

Constraints 

// If any of its ends are unrealized then the role relationship must be unrealized 

∀r :SimpleRel ∃e:SimpleEnd.  

    end(e, r) ∧ isRealized(role(e)) = FALSE ⇒  ¬isRealized(role(r)) = FALSE 
 

 

 

 

Notation 

The notation of a relationship is determined by the characteristics of the associated 

relationship type. It is represented with a line, if binary, or as a diamond with n ends, if 

the relationship type is n-ary. A unary relationship type (i.e., a model property) is 

expressed as a diamond with one end. The relationship role has an associated 

relationship-tag that contains its name, type, generalization and an asterisk is used to 

indicate the realized attribute. In addition, the following apply: 

• The ends can be decorated with optional name labels corresponding to the roles 

on the ends of the associated relationship type. 

• Since ends are ordered, one end may optionally be decorated with a filled-in 

arrow head to indicate that is the last end. For binary relationships this indicates 

directionality for the relationship if the direction is meaningful.  
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• When the relationship type is pure then the name and colon is optional. This is the 

case because there cannot be multiple instances of the relationship type between a 

given set of arguments and so type name is sufficient to uniquely identify it. 

• When the relationship type is a transformation then the name and colon is 

optional since it is pure. In addition, the output end(s) are decorated with an open 

arrow head. 

 

Figure 6.17 shows some example variants. Here, all relationship types are pure except for 

caseOf. The class diagram DVehicle is constrained by having a submodelOf  relationship 

to DTransport, being the result of the transformation classDetails that takes two 

arguments and having the unary relationship (property) isRooted. Since the macromodel 

MX specializes Standard, this introduces model role types Types, Basic and Core that are 

specialized by some model roles of MX. Standard  contains the constraint that every 

Basic sequence diagram must have a caseOf relationship to a Core sequence diagram. 

 

tag format: 

<relationship-tag> ::= <mapping-tag> | <pure-tag> 

                       [<view-stereotype>]                   

<mapping-tag> ::= ((“*” [<relationship-name>])  

                    | <relationship-name>) 

                    [<generalization>]  

                    “:” <relationship-type>                     

<pure-tag> ::=  <relationship-type> 

<relationship-type> ::= STRING 

<relationship-name> ::= STRING 
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6.4.5 EndType, SimpleEnd, SimpleEndType 

An EndType represents an endpoint of a role relationship type. It carries the multiplicity 

of the end as well as the name used to identify then end. A specialization SimpleEnd is 

the special case when it is an endpoint of a relationship that directly references a model 

 

 

Figure 6.17. Examples of notation for relationships. 

Buy Monthly Ticket (Basic): SD 

*Buy Monthly Ticket: OD 

objectsOf 

DCar (Equipment): 
CD 

classDetails 

DVehicle (Equipment): CD 
submodelOf 

“Vehicle”: 

Class 

theModel 

theClass 

TollTicket (Core): SD 

f:caseOf 

isRooted 

 Equipment: CD [*] 

MX (Standard) 

Standard [*] 

Basic : SD [*] 

Core : SD [*] 

:caseOf 
* 

Transport (Types): CD 
submodelOf 

 Types: CD [*] 

* 
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relationship type. In this case, it has multiplicity “1” and it carries a reference to the 

ModelRelEndType for the relationship type.   

Constraints 

// For a SimpleEnd, the lowerMultiplicity and upperMultiplicity must be 1 

∀e:SimpleEnd ·  lowerMultiplicity(e) = 1 ∧  upperMultiplicity(e) = 1  

 

  

Notation 

The notation of endpoints is part of the notation of relationships. See SimpleRel and 

RelType for examples. 

6.4.6 MacroRelType, MacroRel 

A MacroRel represents a macromodel that acts like a relationship – a macrorelationship. 

A macrorelationship has ends like a simple relationship except that it aggregates a 

collection of model roles and relationships within it that express the details of the 

macrorelationship. The endpoints of macrorelationship need not be macromodels but they 

could be. The endpoints of all relationships contained within macrorelationship must 

either be in the macrorelationship or within one of its endpoints. A MacroRelType 

represents a set of macrorelationships with the same structure. The set size is bounded by 

the upper and lower multiplicity within the containing macromodel. In addition to its 

benefits as an aggregating abstraction, a macrorelationship type provides a way of 

defining new relationship types from existing ones using macromodels rather than 

creating a relator metamodel.  
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Constraints 

// The endpoints of contained rels must be in the macrorel or its endpoints 

∀r:MacroRelType, r1:RelSet · in(r1) = r ⇒  

    ∀e:EndType · end(e, r1) ⇒  

         TC(parent(member(e), r)) ∨ 

         ∃e1 :EndType · end(e1, r) ∧ TC(parent(member(e), member(e1)))    
 

 

// define derived association parent 

     ∀r1 : ContainedMember, r2 : Member · parent(r1, r2) � r2 = in(r1) 
 

 

  

Notation 

A macrorelationship is represented using the same conventions as a relationship except 

that the line is thick (same thickness as macromodel borders). The content of a 

macrorelationship, when it is shown, is indicated with a dotted lasso. Any element that is 

contained within or intersects with the lasso is considered to be within the 

macrorelationship. If the content is shown but is incomplete then the “{inc}” designator 

is used in the tag. Figure 6.18 illustrates the use of a macrorelationship. The lower 

macromodel diagram shows two macrorelationships objectsOf and caseOf with their 

content not shown. The upper diagram shows the content using lassos. Note that 

objectsOf is a composition of transformations and so it is a transformation itself and it is 

shown as such. If a relationship endpoint intersects with the lasso then the 

macrorelationship must also have an endpoint on it or on a container of it. This is shown 

in both macrorelationships since they begin on a macromodel containing the source 

endpoints and end on models that are the target endpoints. 
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tag format: 

<macrorelationship-tag> ::= [<relationship-name>]  

                                           [<generalization>]  
                            [<multiplicity>] 

                            [<macroview-stereotype>] 

                            [“{inc}”] 

<relationship-name> ::= STRING 

 

6.4.7 ElementSet, ElementRole 

An ElementRole represents a specific model element, optionally, with a given name. 

However, since macromodels can only reference models, the element role is really a 

shorthand for a singleton model reference.  Specifically, element role E:TE is equivalent 

to the unrealized model role *E:One[TE] where the element is constrained to have the 

same name as E if it has a name (otherwise it is an anonymous element role). If the 

element role is put inside a model role M:T then this expresses the constraint that there 

must exist a an element of type TE with name name(E) in the model playing M and this 

element is considered to be the player of element role E. Thus, TE must also be a sort in 

the metamodel corresponding to T.  

 

An ElementSet represents the entire set of elements of a given type within a model role. 

The intent is to provide a way to reference the set of elements for a given sort in the 

metamodel of the model. An element set has no name, only a type and no multiplicity can 

be specified. Note that unlike a model role type which represents a set of model roles 

within a macromodel, an element set represents the set of elements in the model playing a 

model role and not the set of element roles within the model role itself. We give an 

example below in the notation section to clarify this distinction. 
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Figure 6.18. Examples of macrorelationships. 

TransportationProject {inc} 

Toll <<view>> 

theModel 

objectsOf objectsOf 

+ TransportationSystem: 
UML 

Toll Station: OD Toll Transaction: SD 

Buy Monthly Ticket: SD Buy Single Ticket: SD 

*Buy Monthly Ticket: 
OD 

*Buy Single Ticket: 
OD 

f1:caseOf 

f2:caseOf 

caseOf 

TransportationProject {inc} 

Toll <<view>> 

theModel 

TransportationSystem: 
UML 

Toll Station: OD Toll Transaction: SD 

Buy Monthly Ticket: SD Buy Single Ticket: SD 

caseOf 

objectsOf 

objectsOf 
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Notation 

Both element roles and sets are expressed as a rectangle with rounded corners within a 

compartment of the containing model role. Element roles are always considered to be 

unrealized but it can be prefixed with “*” for clarity. Although multiplicities cannot be 

expressed for an ElementSet, a pseudo multiplicity indicator “[*]” is used to identify it as 

a set and distinguish it from an ElementRole. Figure 6.19 shows an example in which the 

sequence diagrams in set Cond within RoadControl are generated by classes in a class 

diagram RoadCondition. The element set Class represents the set of all classes in the 

model that plays the role RoadCondition. Two specific classes are represented by element 

roles and linked to specific sequence diagrams. Thus, any model that realizes 

RoadCondition is required to have at least two classes with these names. In contrast, the 

type CondCase represents the set of all model roles within RoadControl and in this case 

this set consists of {M1, M2}. 

 

tag format: 

<elementrole-tag> ::= [“*”][<element-name>] “:” <element-type> 

<elementset-tag> ::= <element-type> “[*]” 

<element-name> ::= STRING 

<element-type> ::= STRING 
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6.4.8 View 

Any ContainedMember in a macromodel can behave as a view of a base model. To 

express this, a View acts as a container that holds another role and “converts” it into a 

view. In this case it means that the full content of role (i.e., the content in any models or 

relationships playing this role or roles within this role) is a subset of the content of the 

base model. A view is associated with a set of generators, a base model given by 

theModel and a distinguished role constraint representing the content criterion of the 

view. A view that holds a macromodel is a presentation and if isComplete = TRUE then it 

 
 
 

Figure 6.19. Examples of element roles and element role types. 

TransportationSystem  : UML 
<<+view>> {inc} 

RoadCondition: CD 

Class [*] 

RoadControl 

M1 (CondCase)  : SD 

M2 (CondCase)  : SD 

theCondition 

CondCase:SD [*] 

SDforCondition 

HighTraffic 
:Class 

LowTraffic 
:Class 

0..1 
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is a decomposition. The theModel designator is optional only if the view is within another 

element that is a view. In this case theModel for the inner view is assumed to be the same 

as theModel for the containing view. 

Constraints 

// define the derived association parent 

∀v1, v2:View ·parentView(v1, v2) � v2 = in(view(v1)) 

 

// theModel is optional only for nested views 

∀v1: View · (¬∃r:ModelRoleType ·theModel(r, v1)) ⇒ 

                      ∃v2:View, r:ModelRoleType · TC(parentView(v1, v2)) ∧ theModel(r, v2) 

 

// isComplete can only be true for Macromodels 

∀v:View · isComplete(v) = TRUE ⇒ ∃r:Macromodel · r = member(v) 

 

  

 

Notation 

A view is designated by adding the stereotype “<<view>>” to the tag for the element. If 

isComplete = TRUE then the stereotype “<<+view>>” is used instead. The stereotypes 

can be omitted if the view is within a role that is itself in a View. The generators and the 

base model can be shown connected to the view via dashed arrows. In the case of a 

generator, the arrow points to the view and in the case of the base model it points to the 

base model. The generator endpoints can optionally be given a name and the base model 

endpoint always has the name theModel. When the extractor defining the content criteria 

of the view takes a single generator as an argument then it can be indicated on the dashed 

arrow for the generator.  

 

A view that is a macromodel (i.e., a presentation or decomposition) can also be expressed 

in a way that combines the base model with the macromodel. In this case, the box has a 
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thick border to indicate a macromodel but the tag compartment contains two lines. The 

first line is the base model tag and the second line is the macromodel tag. Additional 

compartments can apply to either the base model or the macromodel and should be 

ordered to show the base model compartments first and then the macromodel 

compartments. If the base model participates in a relationship then the relationship end is 

attached to the top compartment while if the macromodel participates in a relationship 

then the end is attached to the compartment showing the macromodel content. Figure 

6.20 illustrates this. 

tag format: 

<macroview-stereotype> ::= <view-stereotype> | “<<+view>>” 

<view-stereotype> ::= “<<view>>” 

<combined-tag> ::= <modelrole-tag> EOL <macromodel-tag> 

 

6.4.9 ModelRelType, ModelType, ModelRelEndType, ElementType, 

Morphism 

The first four of these represent artifact types used by the roles in a macromodel. A 

Morphism contains a signature morphism between two metamodels. A ModelType that is 

concrete (i.e., isAbstract = FALSE) has a reference to the metamodel artifact that defines 

the model type. Similarly, a concrete ModelRelType carries a reference to a relator 

metamodel and the corresponding ModelRelEndType elements contain Morphism 

elements that map the relationship endpoint metamodels. An ElementType is a proxy for 

a sort in a metamodel of a model type and it can occur in multiple metamodels. 

 



www.manaraa.com

188 

 

 

 

Figure 6.20. Example of a combined base model and decomposition view. 

*M:T 
MX <<+view>> 

M3:T3 M4:T4 

… 

r3:R3 

M2:T2 

M1:T1 

R1 

r2:R2 

… 

MX2 

equivalent 

MX <<+view>> 

M3:T3 

*M:T 

M4:T4 

… 

r3:R3 

M2:T2 

M1:T1 

R1 
r2:R2 

… 
MX1 

theModel 
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Notation 

These elements are normally shown in a separate diagram from macromodels as a type 

diagram. A type diagram is shown simply as a UML style class diagram with no 

multiplicities. Abstract types have names italicized and subtyping is shown with the 

triangle headed arrow. Figure 6.4 is an example of a type diagram. Types can show the 

stereotype “<<type>>” when they are shown within a macromodel diagram but may omit 

them in a type diagram. Relationship type arrow conventions are the same as for 

relationships in a macromodel diagram. Metamodel morphisms are shown with 

stereotype “<<morphism>>”.  The concrete elements can show the reference to the 

corresponding metamodel artifact (not shown in Figure 6.4) . 

 

6.4.10 ContentConstraint 

This is an abstract metaclass for constraints owned by a role. Each type of constraint 

language may define its own concrete subclass to define a constraint notation. Owned 

constraints are assumed to be conjoined with each other and with the constraints that are 

inherited from roles that are specialized. 

Notation 

Constraints owned by a role can optionally be specified directly within a notation 

element. The approach varies with the kind of role. For a model role, the constraints 

appear within a compartment in the model role box. Similarly for a macromodel. For a 

relationship role, constraints appear in brace brackets near the relationship-tag. Each 
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constraint is prefixed by a language-identifier that indicates the constraint language used. 

If an owned constraint is prefixed with “cc:” then it is assumed to be part of the content 

criteria for a view.  

 

We do not elaborate the many different possible constraint languages as it is beyond the 

scope of this thesis. Rather we focus on two. The first is to use FO+ as a constraint 

language. An example of this is shown in Figure 6.1. Note that the sentence is assumed to 

be defined over the signature of the model type of the owning role (in this case, SD). The 

second constraint language of interest is to use the macromodel language itself as an 

owned constraint. Figure 6.2 shows an example. A macromodel such as this uses the 

following conventions: 

• Local roles may be expressed along side other model roles. A local role is a role 

that is named relative to the owning role. The pseudo role Self  is always available 

as a local role and it refers to the owning role. If the owning role is a view then 

each generator name can be used as a local role. 

 

• Roles that are referenced but are external to the owning role have a dashed border. 

• Only pure (or unrealized) relationships can be used to express the constraint. 

 tag format: 

<constraint> ::= language-identifier [“cc”] “:” constraint-body 

<language-identifier> ::= STRING 

<constraint-body> ::= STRING 
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6.4.11 MultiplicityElement 

An abstract class representing elements with multiplicities. 

Constraints 

//The lowerMultiplicity must be less than the upper multiplicity 

∀z:MultiplicityElement·  DEFINED(upperMultiplicity(z)) ⇒ lowerMultiplicity(z)  ≤ 
upperMultiplicity(z) 

 

  
  
  

 

Notation 

A multiplicity specifier can optionally occur in the name of instances of concrete 

subclasses of this class. The particular context of occurrence is given by the concrete 

subclass. An omitted multiplicity specifier indicates the multiplicity: upperMultiplicity = 

1, lowerMultiplicity = 1 

tag format: 

<multiplicity> ::= “[“ <multiplicity-val> “]” 

<multiplicity-val> ::= “*” | “0..*” | “1..*”  

                       | NUMBER | NUMBER “..” NUMBER  

 

 

 

6.5 Summary 

In this chapter we have presented the macromodeling language as a way of modeling the 

role level. As such it both provides a mechanism for expressing modeler intent at the 

project or method level and allows this to be represented graphically. Special support is 

given for the various aspects of modeler intent discussed in this thesis. This includes: 
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views, content criteria, decomposition criteria, model roles, role types, relationships and 

relationship types. Macromodels can be used to support comprehension of a collection of 

models in a project, to guide their evolution and to support automation.  
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Chapter 7  

Decomposition Criteria 

In the intent framework, a consumer’s need for information gives rise to an existential 

intent for a model. However, this usually does not mean that the information must be 

delivered as single artifact – rather, it is often presented as a decomposition consisting of 

a collection of interrelated models. Thus, decomposition is a natural and ubiquitous part 

of modeling activity. As discussed in the Chapter 2, there are several reasons why a 

modeler may want to decompose a model: the model may be decomposed into smaller 

parts and into different levels of abstraction in order to manage complexity, it may be 

split into other types of models with well defined notations in order to render it when it 

has no single notation (e.g., with UML), it may be partitioned in order to support some 

task such as assigning the parts to different teams, etc. Furthermore, this reason may 

underdetermine the particular decomposition chosen and so the intent may include design 

decisions about the decompositional structure as well. 

 

In this chapter, we explore the part of the intent framework that addresses how the 

modeler can express their intent about model decompositions and refer to expressions of 

this intent as decomposition criteria. In Chapter 4 we noted that different partiality 

relationship types can be used to decompose a model in different ways such as into 
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“parts” (i.e., submodels), abstractions, etc. Here we follow Chapter 5 by focusing on 

submodels and study the common case of decompositions into submodels or diagrams. 

As with other types of modeler intent discussed in this thesis, explicit and formal 

decomposition criteria provides value by improving the consumer’s comprehension of a 

model decomposition, by improving the quality of the model and its decompositions and 

by supporting automation and model evolution. In particular, we develop the notion of 

indexed decomposition criteria as a way of decomposing a model that has similar 

comprehension benefits to classification schemes in information classification systems. 

We then identify three types of modeling defects that indexed decomposition criteria 

helps detect. Finally, we discuss the applicability of decomposition criteria to a variety of 

model automation and evolution scenarios. 

7.1 Basic approach 

In Chapter 5, we developed the idea that when a modeler is creating a diagram (or any 

submodel) of a model, she is following some principle for deciding what information 

from the model belongs in the diagram and what does not. Thus, the modeler intends that 

the diagram represents a particular view of the model and this is expressed using a query-

like role constraint called the content criterion. In a similar manner, we argue here that 

whenever a modeler decides to decompose a model, she does not break it arbitrarily into 

submodels but rather, she is following some principle that guides how to do this. 

Furthermore, it is not enough that this principle simply yield submodels; rather, it must 

also define the content criteria for each of these, since, like all models, each must have a 

well defined purpose. Thus, the principle must actually yield a set of views of the model.  
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As a simple illustration, consider the decomposition shown in Figure 7.1 from the 

transportation system example. Here, the macromodel DTollPriceX expresses the 

decomposition of the model role DTollPrice into the following set of views: BaseClasses 

shows its base classes, DVehicle shows the details for the class Vehicle and DTollTicket 

shows the details of the class TollTicket. DVehicle is further decomposed into two views: 

the vehicles related to the class Commercial User and the vehicles related to the class 

Non-commercial User. The definitions of the extractors top, relatedTo and classDetail 

used in these views are given in Appendix E. 

 

While Figure 7.1 does depict a decomposition of DTollTicket, it does not give any 

indication of what the intention was regarding how the constituent views in DTollPriceX 

where chosen – i.e., it does not contain decomposition criteria. Now consider the 

assertion “DTollPriceX is a presentation of DTollPrice containing: the top view 

BaseClasses and a classDetail view for each class in BaseClasses”. This assertion is the 

decomposition criterion for DTollPriceX and it does two things: 

1. It specifies how to construct a particular set of constituent views in DTollPriceX 

for each realization of DTollPrice.  

It provides a guarantee that the realizations of these views will decompose the realization 

of DTollPrice – i.e., that the DTollPriceX is a decomposition. 
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Figure 7.1. A simple decomposition from the transportation system example. 

DTollPriceX <<+view>> 

*DVehicle : CD 
<<+view>> 

cc : Self = classDetails(theModel, class(“Vehicle”)) 
 

DnonC : CD 

DC : CD 

cc: Self = relatedTo(TransportationSystem, 
class(“Commercial User”)) 

BaseClasses:CD 
 

cc:Self = top(theModel) 
DTollTicket:CD 

cc: Self = classDetails(theModel, class(“TollTicket”)) 

Transport1 

TransportationSystem:UML 

cc: Self = relatedTo(TransportationSystem, 
class(“Non-commercial User”)) 

theModel 

theModel 

DTollPrice:CD <<view>> 

cc: Self = tollPriceRelated(theModel) 
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Point (1) expresses the fact that the basis of the decomposition is “base class” and when 

the set of base classes change then so does the set of views. Point (2) comes from the fact 

that any class diagram can be decomposed on the basis of its base classes into a set of 

classDetails views. This suggests that a generic approach to decomposition is being 

applied here. Note that the decomposition criteria do not just define how each realization 

is DTollPriceX decomposed into submodels – it gives the content criteria of these as well 

since it defines the views they realize. In order to better understand this, consider a 

criterion like “DTollPriceX contains the set of all class diagram submodels of DTollPrice 

containing two or fewer classes.” This criterion defines a unique set of submodels for 

each realization of DTollPrice that decomposes it. However, it does not define the 

content criterion for each of these submodels and hence gives no indication of the intent 

behind the content for each. Thus, it would not count as a valid decomposition criterion. 

 

Expressing the decomposition criteria provides a number of benefits and we discuss these 

in Section 7.3. We now develop the concept of decomposition criteria more formally. 

 

7.2 Formalization 

The objective of this section is to encode a decomposition criterion formally in order to 

be precise about its structure, allow the definition of validity conditions that must hold 

and for characterizing the types of defects that can be detected. As discussed in Chapter 

6, a presentation is a macromodel that is also a view of some base model role M and it 

consists of a collection of views. A decomposition is a presentation that has the additional 
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constraint that the sum of its constituent views is equal to M. We now define the 

following related concepts. 

 

Definition 7.1. Presenters and decomposers.  A presenter (decomposer) is a 

transformation that when applied to a model M produces a presentation (decomposition) 

of M. Thus, it is a transformation that generates a macromodel from a model. 

 

While our main focus will be on decomposers and how these can be used to define 

decomposition criteria for particular decompositions, it is useful to understand these as 

being special cases of presenters and presentations. Thus, although a presentation is a 

kind of view of M that consists of other views, it alone contains no information about the 

basis on which the presentation is structured. In a way analogous to views, where an 

extractor was used to characterize modeler intent by specifying how a submodel is 

constructed from each realization of M, a presenter can be used to characterize modeler 

intent about a presentation by defining how to construct it from each realization of M. 

When we assert the constraint that a particular presentation MX is constructed from its 

base model M using a presenter P, then we call this constraint the presentation criteria of 

MX. When MX is a decomposer, this becomes its decomposition criteria. We now extend 

this analogy further by extending the inclusion constraint approach from views to 

presenters. 

7.2.1 Inclusion constraints 

With views, the content criteria operationalize the modeler’s principle for deciding what 

information to include into a submodel and a natural way to express this is as a set of 
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inclusion constraints. If we extend this idea to presentations, we could ask what sort of 

inclusion constraints would operationalize the modeler’s principle for deciding what 

views to include into the presentation. To elaborate this we must be clear about what set 

we are including views from. Since we define views in terms of extractors, we need only 

focus on how to select the correct extractors. Let ExtractorL define the set of all extractors 

in some language L for defining extractors. In this case, if we are defining the 

macromodel MX as a presentation of M, we can consider the inclusion constraint to be of 

the form: 

∀f ∈ ExtractorL ·  

         DEFINED(Q(f, M)) ⇒ 

         (∀v:MX .view· (CCv := ‘f(M)’) ⇒ Q(f, M)) ∧ 

         (Q(f, M) ∧ f(M) ≠ ∅) ⇒ ∃v:MX.view ∧ (CCv := ‘f(M)’) 

(7.1) 

 

Here, Q(f, M) is the condition that extractor f must satisfy according to the modeler’s 

intention in order for a view with content criterion “f(M)” to be included in MX. Thus, the 

inclusion constraint says: if f satisfies condition Q and f(M) results in a non-empty subset 

of M  then MX must contain a view with content criterion “f(M)” and these are the only 

views it contains. The non-emptiness part of the condition is due to the intuition that we 

typically don’t express submodels that are empty. For example, in Figure 7.1, even if our 

intent was to have a classDetails view for each base class, if this turned out to be empty 

for class TollTicket then it would be “ok” to not have a diagram for it at all (i.e., this 

should not violate the modeler’s intent). This inclusion constraint defines the presentation 

criterion for MX and when MX and M are replaced by parameters it defines a presenter. 
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In Chapter 5, we considered the case of defining views with L = FO+. In that case, the 

language for expressing Q would need to express properties of FO+ theories. Although 

this is a general approach, it may be too complex for a practical application. Instead, we 

take a simpler approach by considering the classes of views that can be defined using 

parameterized extractors. In particular, we consider extractors with a single generator. 

 

Given an extractor F:T × T1  → T2, we can define a class of F-views Msub of M with 

content criterion CCMsub := F(M, m1)  where m1 is another model role. Thus, we can 

reduce the problem of defining Q to that of defining the set of model roles m1. Although, 

this doesn’t appear to reduce the problem significantly (because one set of roles is 

defined in terms of another), in practice it is useful. In particular, we can do the 

following:: 

1. Let m1 be the set of element roles corresponding to the elements in some model 

role M1 that is a view with content criteria Q 

2. Let m1 be the set of model roles in a macromodel MX1 

In both cases, we say that the set of views in MX is indexed by another model. In the first 

approach, the views are indexed by the set of elements of a given type within model M1. 

This allows us to define Q simply as the content criteria of a model as described in 

Chapter 5. In the second approach, the views are indexed by “simpler” roles in another 

macromodel. Since this macromodel can itself be indexed by another model, it allows a 

composition of indexing that could be ultimately grounded in a simple model (i.e., the 

first approach).   
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When presentation criteria are given in this form we call them indexed presentation 

criteria. Correspondingly, if we add the decomposition constraint then they become 

indexed decomposition criteria. The example discussed in Figure 7.1 has indexed 

decomposition criteria at two levels. DTollPriceX is a decomposition indexed by 

BaseClasses and the decomposition of DVehicles is indexed by the set of “user types”. 

We elaborate this further below. 

  

Although indexed decomposers are very restricted compared to the general form shown 

in formula 7.1, we have found that it sufficient for most common expressions of 

decomposition criteria. Furthermore, they have two important features. First, they are 

simple and natural to express graphically using the macromodel notation as we shall see 

below. This makes them practical to express during the modeling process. Second, they 

provide a level of abstraction that aids model comprehension because the elements of the 

index set could be seen as “classifying” the content of the corresponding view. We 

discuss this further in Section 7.3.1. 

7.2.2 Graphical expression of decomposition criteria 

Decomposition criteria as we have described it above can be directly expressed within the 

macromodeling language. The general form is shown in Figure 7.2. The dashed arrow 

from the role type MR.T1 to the role type MX.R expresses the indexing relationship. 

Specifically, it indicates that:  

1. There is an R view generated by each element x:T1 of MR for which F(theModel, 

x) is non-empty. 
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2. Each R view is generated by a T1 element of MR using F. 

3. The set of views in MX decomposes M. 

 

Thus, MX can have a different set of R views for different realizations of MR. Note that 

here we assume that MR is a model role type and T1 is an element role type (indicated by 

the rounded box); however, a similar pattern can be had with MR  as a macromodel and T1 

a model role type within it. 

 

We now apply this graphical approach to the example in Figure 7.1. First consider the 

indexed decomposer ByBaseClasses in Figure 7.3. expressed as a macromodel type. This 

consists of a singleton view type BaseClasses and a view type BaseDetail, both having 

 

 
Figure 7.2. The general form for expressing decomposition criteria in a macromodel. 

MX <<+view>> MR 

 

R [*] 

theModel 

M 

T1[*] 
F 
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model type CD. Given any class diagram realizing theModel, there is a unique
26

 

conformant instance of ByBaseClasses and this contains the view BaseClasses showing 

the set of base classes in theModel and a set of BaseDetail views indexed by the classes 

in BaseClasses the show the details for each of these base classes. Furthermore, this 

macromodel is required to be a decomposition of theModel. 

 

The ByBaseClasses decomposer is applied to DTollPrice in Figure 7.4 to express the 

decomposition criteria of the first level of the hierarchical decomposition. Once again 

DTollPriceX shows a decomposition of DTollPrice, but this time it is marked as an 

instance of the ByBaseClasses decomposer and its top level constituents instantiate the 

constituents of this decomposer. Both the views DTollTicket and DVehicles are instances 

                                                 

26
 Note that we mean uniqueness up to renaming of views – an arbitrary number of equivalent macromodels 

 

 
Figure 7.3. The generic base classes decomposer. 

ByBaseClasses <<+view>> <<gen>> 

BaseClasses:CD 
 

cc:Self = top(theModel) 

BaseDetail: CD [*] 

theModel 

CD 

Class [*] 
theBaseClass 

classDetails 
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of the view type BaseDetail. The decomposition criteria of DVehicles are also expressed 

using a decomposer but whereas ByBaseClasses is a global decomposer, this one is only 

locally defined. There is a single anonymous view type CD[*]  representing the 

constituent views and this is indexed by the unrealized view UserTypes that shows the 

main types of users of a vehicle in the transportation system. The content criterion of 

UserTypes shows that it is the set of direct subclasses of the class User in the 

TransportationSystem.  In the current example, this consists of Commercial User and 

Non-commercial User (see Appendix E).  

 

The key difference between Figure 7.1 and Figure 7.4 is that the definition of the 

decomposer ByBaseClasses and the local decomposer of DVehicles make the basis for 

these decompositions explicit. Thus, it is now clear that the intent behind DTollPriceX is 

that it is decomposed first by its base classes and then DVehicles is further decomposed 

by the user type. In both these decompositions, the indexing set and its content criteria are 

made explicit whereas in Figure 7.1 it was not clear what these were. For example, if a 

new user type is added by adding a subclass to class User in TransportationSystem, the 

indexing constraint implies that DVehicles should have another view – this implication 

was not evident in Figure 7.1. 

                                                                                                                                                  

can be produced that have the same views but are named differently.  
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Another way that Figure 7.4 is different from Figure 7.1 is that in the former, the content 

criteria for the sets of the indexed views are specified only once in the view type whereas 

in the latter it is specified for each view. This yields two standard benefits of using typing 

 

 
Figure 7.4. DTollPriceX augmented with decomposition criteria. 

DTollPriceX (ByBaseClasses) <<+view>> 

*DVehicle (BaseDetail): CD 
<<+view>> 

theBaseClass = “Vehicle” 
 

DnonC : CD 

DC : CD 

theUserType = “Commercial User” 

(BaseClasses):CD 
 

DTollTicket (BaseDetail):CD 

theBaseClass = “TollTicket” 

Transport1 

TransportationSystem:UML 

theUserType = “Non-commercial User” 

 

theModel 

theModel 

DTollPrice:CD <<view>> 

cc: Self = tollPriceRelated(theModel) 

:CD [*] 

cc: Self = relatedTo(TransportationSystem,  
theUserType 

*UserTypes:CD <<view>> 

cc: Self = 
directSubsOf(Class(“User”)) 

theModel 

Class [*] 
theUserType 
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for views: it reduces the effort required to specify the content criteria and it makes it clear 

that the content criteria for multiple views are intended to have the same form.  

7.2.3 Characteristics of decomposers 

Local vs. Global scope 

Our example illustrates some important characteristics of decomposers. First we noted 

that ByBaseClasses was specified in a global scope independently of any particular use 

whereas the anonymous decomposer used in DVehicles was specified in a local scope and 

applies only to that one macromodel. Since the DVehicles decomposer is in a local scope 

it can reference any other model in the same scope. For example, this allows the content 

criterion of the view type to reference TransportationSystem. In contrast, ByBaseClasses 

can only reference its generators and theModel. However, this also means that 

ByBaseClasses can be reused in multiple contexts. 

Generic vs. domain-specific decomposers 

We can consider ByBaseClasses to be a generic decomposer because it can be applied to 

any class diagram to produce a ByBaseClasses decomposition of it. This is because every 

class diagram has a set of base classes, the set of BaseDetails views can always be 

constructed of these and they are guaranteed to decompose the class diagram. In contrast, 

the decomposer used in DVehicles is specific to the transportation system domain since it 

requires that the UserType model exists and that the set of views that are indexed by 

UserType yields a decomposition of DVehicles.  Such a set of requirements are only 

satisfied by certain UML models. 
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The degree of generality of a decomposer is governed by its preconditions. A generic 

decomposer like ByBaseClasses has no preconditions. The benefit of generic 

decomposers is that they can be designed with good quality properties and then used in 

arbitrary contexts where a systematic decomposition is needed. The drawback is that they 

convey no domain semantics. It is typical to use a combination of generic and domain 

specific decomposers to structure a model and this is evident from the example 

applications in Chapter 8. 

Tangling of subject with model 

Decomposers allow the content of particular models in a project (i.e., the index models) 

to affect the macromodel structure and thus they represent a kind of tangling between the 

intention about the subject and intention about the model discussed in Chapter 2. For 

example, in the ByBaseClasses decomposer, the content of the submodel that realizes 

BaseClasses is used to determine what BaseDetail views will be in the resultant 

decomposition. This kind of tangling is not surprising because it is often the case that the 

intent of a modeler is to detail an element that occurs in another model and this gives rise 

to detailOf relationships discussed in Chapter 5. 

 

7.3 Value of decomposition criteria 

7.3.1 Impact on model comprehension 

In Chapter 2, we discussed how expressions of modeler intent provides a summarizing 

abstraction of model content that helps manage complexity and aid comprehension. Here 

we apply this concept to macromodels rather than to domain models in order provide a 
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summarizing abstraction of macromodel content. Decomposition criteria add missing 

(i.e., unexpressed) information about the modeler intent regarding the decomposition and 

this allows a consumer to understand the underlying rationale for the way the collection 

of views that form the decomposition is structured. 

 

Indexed decomposers also provide a level of abstraction in another way because the 

elements of the index set could be seen as classifying the content of their corresponding 

views. In this sense, an indexed decomposer defines a classification scheme [ISOC] that 

structures the content of a model where the index set represents the principle of division 

that conveys the basis for the decomposition. When indexed decomposers are combined 

to form hierarchical decompositions they correspondingly form hierarchical classification 

schemes. The consistent use of a meaningful principle of division at each level of 

decomposition facilitates comprehension of this hierarchy. Classification schemes are 

widely used to organize information in order to aid comprehension, search and convey 

semantics. Thus, these same benefits also accrue for indexed model decompositions. 

 

7.3.2 Impact on model quality 

In Chapter 5 we identified six types of defects that content criteria could be used to 

identify. The notion of decomposition criteria builds on that of content criteria and adds 

new constraints that must hold between the content of models and the structure of the 

macromodel. In the case of indexed decomposition criteria, the indexing constraint says 

that there must be a view generated by each index value that produces a non-empty 
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submodel and all the views must be generated by elements from the index set. Table 7.1 

lists three possible defects that are detectable due to this constraint. 

 

The first two are similar to inclusion/exclusion defects that occur with content criteria but 

here we consider the inclusion/exclusion of views in the macromodel. View exclusion 

violations are interesting since they indicate that new views with specific content criteria 

must be created. Thus, they could be seen as “proposing” diagrams that are implied by 

the modeler’s intent. This is particularly relevant during model evolution and is discussed 

in Section 7.3.3 below. The final type of defect occurs when an index value produces an 

empty submodel and so a view is not required. This may signal an unusual situation 

because if the modeler intended the decomposition of the model into views according to 

an index set, then a typical expectation is that there is some content in the view for each 

index value (i.e., otherwise, why not just exclude the “irrelevant” values from the index 

set?). Nevertheless, there may be cases when it is reasonable for this situation to occur 

and so we refer to this only as “potential” incompleteness. We will see some of these 

cases in the example applications in Chapter 8. 

Relationship to decomposition quality 

Wand and Weber’s work on system decomposition [WW89] suggests that of the many 

possible system decompositions, not all are of equal quality and that measures such as 

coupling and cohesion can be used to assess decomposition quality. Moody [M00] 

applies this approach to conceptual model decompositions and gives a set of principles 

that characterize a good decomposition. These include: integration – that the entities of a 

constituent model are all related to one another; unity – that the content of each 
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constituent model should be related to a single central entity; cognitive manageable – that 

each constituent model should contain at most nine entities; etc.  

 

Decomposition criteria can be seen to help improve decomposition quality in two ways. 

First, the complexity of the decomposition criteria can be used as an indicator of 

decomposition quality since the more complex this is, the more difficult it is for a 

consumer to comprehend a decomposition. Second, predefined generic decomposers 

could be developed that are guaranteed to meet certain quality levels by adhering to 

Moody’s (or other) principles of good decomposition. For example, the ByBaseClasses 

decomposer guarantees the satisfaction of the integration principle (all related through the 

base class) and the unity principle (base class is the central entity) but not the cognitive 

manageability principle (can have more than nine entities related to the base class). These 

“well-behaved” decomposers can then be mandated as standards to be used during 

modeling activities.  

Table 7.1. Defect types detectable due to indexed decomposition criteria. 

 

Defect Type Occurrence criteria 

View inclusion 

violation 

Views exist in the macromodel that do not correspond to an index 

value or are not of the type specified in the decomposer. 

 ∃v:MX.R · ¬∃x:MR:T1 ·  CCv := F(M, x) 

View exclusion 

violation 

An element exists in MR that generates a non-empty submodel but 

no corresponding view exists in MX.R.  

 ∃x:MR:T1 · F(M, x) ≠ ∅ ∧  ¬∃v:MX.R · CCv := F(M, x). 

Potential 

incompleteness 

Some views are empty. 

 ∃x:MR:T1 · F(M, x) = ∅ 
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7.3.3 Support for automation and model evolution 

Figure 7.5 shows the basic modes for using macromodels discussed in Chapter 6 applied 

specifically to decomposition. In conformance checking mode, there is a known 

decomposition and the question is whether it conforms to given decomposition criteria in 

order to assess the correctness of the decomposition.  

 

 

Figure 7.5. Three main modes for using decomposition criteria. 

unknown 

Extension-to-conformance mode: 

Generating a decomposition 

DTollPrice:CD 
theModel 

Conformance checking mode: 

Checking a decomposition 

DTollPriceX (ByBaseClasses) <<+view>> 

conformant? 

DTollPrice:CD 
theModel 

Top-down modeling mode: Guiding a decomposition 

DVehicle (BaseDetail):CD DTollTicket(BaseDetail):CD 

DTollPriceX (ByBaseClasses) <<+view>> 

(BaseClasses):CD 

unknown 

unknown unknown 

unknown 

Change propagation mode: 

Repairing a decomposition 

changed 
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In the extension-to-conformance mode, a particular model is given and a decomposition 

of it is synthesized according to certain decomposition criteria. Predefined decomposers 

can be used to produce decompositions with good quality properties. In change 

propagation mode, a change can cause view inclusion/exclusion violations and repairs to 

resolve them require views to be removed/added. For example, in Figure 7.4, if a new 

class Road is added to the submodel realizing BaseClasses then a new view Road:CD 

must appear in macromodel DTollPriceX.BaseDetail and a corresponding submodel 

created to contain this class and its details. Finally, in top-down modeling mode, before a 

model is created, a particular decompositional structure is imposed on it using 

decomposition criteria and this directs subsequent model development to refine this 

structure. This may occur due to method-level intent when a development process 

mandates the existence of submodels playing certain roles.  It occurs due to project-level 

intent if the modeler (as definer) designs the decompositional structure. For example, a 

UML model may be decomposed on the basis of package, major component, use case, 

etc. and the modeler may decide one of these bases at the outset in order to manage the 

complexity of the model creation process.  

 

During model evolution all four modes may apply. As a submodel becomes too large to 

handle easily, extension-to-conformance can be used to synthesize a decomposition of it 

that is more manageable. Top-down modeling may apply when a major new section of 

the model is identified and the content must be pre-structured. As content and submodels 
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are being added and removed, conformance checking and change propagation can be 

used to ensure that it is still consistent with the decomposition criteria. 

 

The identification of the decomposition criteria exposes the different ways that model 

evolution can affect diagram structure. One dimension of change is horizontal: a model 

change may cause index values to be added/removed and this adds/removes 

corresponding views. The addition of the class Road to BaseClasses, as discussed above, 

is an example of this. Another dimension of change is vertical: any view can be 

decomposed further (or a decomposition removed) if more content is added (removed). 

For example, if DTollPrice evolves so that DTollTicket becomes too complex, it could be 

replaced by a decomposition into smaller views in the way that  DVehicles is. Finally, 

another form of change is to reorder the indices. For example, in 7.4, we could 

alternatively use decomposition by UserType at the top level in DTollPriceX and then use 

ByBaseClasses within either or both of these views. This does not affect the content of 

diagrams but re-groups them. 

7.4 Summary 

Chapter 5 introduced the notion that the modeler intent about a diagram or submodel of a 

model can be characterized as a view of the model defined using content criteria. In this 

chapter, we extended this concept to collections of diagrams/submodels that decompose a 

model and called this the decomposition criteria of the decomposition. In the same way 

that an extractor is used to express content criteria, a decomposer is used to express 

decomposition criteria by defining how to generate a collection of views that decompose 

a larger view or model. In particular, we have focused on indexed decomposers because 
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they support comprehension by defining a classification scheme over the decomposed 

model and they can be expressed graphically within a macromodel. Furthermore, our 

examples in Chapter 8 suggest that these are a commonly occurring form of 

decomposition criterion.  

 

Although decomposition criteria are not typically expressed explicitly for collections of 

models, we propose that doing so can bring various benefits to modeling practice. Model 

comprehension by stakeholders can improve because indexed decomposition criteria 

reveal the basis for a decomposition and thus provide a meaningful level of abstraction 

over a macromodel. Violations of the constraints expressed in decomposition criteria 

reveal structural defects in the decomposition and hence help to improve the quality of 

the model and decomposition. Finally, automation and model evolution is supported 

because decomposition criteria are expressed formally and can be used to guide and 

synthesize the structure of a decomposition as a model changes.  
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Chapter 8  

Evaluation 

In this section, we evaluate the approaches defined in this thesis for expressing modeler 

intent by reverse-engineering the role level for two detailed example modeling projects 

and assessing the value this brings. In Chapter 1, we discussed four ways that value can 

be obtained from expressing modeler intent: improving model quality, improving model 

comprehension, supporting automation and supporting model evolution. The 

improvement of model quality is due to the ability to identify various types of defects 

exposed by expressing modeler intent. Thus, we enumerate the occurrences of these 

defects for both examples and discuss how to improve their quality by correcting them.  

 

We evaluate the ability for modeler intent to improve model comprehension in the 

examples by enumerating the quantity and variety of information about modeler intent 

that we make explicit through the reverse engineering process. As discussed at various 

points in this thesis, modeler intent can be shown to aid model comprehension. We 

briefly review the basis for this claim here from the perspective of linguistics and from 

the perspective of complexity management. A dominant view from linguistics 

(pragmatics), regarding the comprehension of texts is that this depends on the reader’s 

ability to determine the author’s intent [G01]. Rhetorical Structure Theory [RST] extends 
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this further to include the author’s intended relationships between texts. Correspondingly, 

since a model is kind of text, we expect that a consumer’s comprehension of a model 

depends on their knowledge of the modeler’s intent and when there are multiple related 

models, this includes the intended relationships between the models.  

 

Modeler intent expressed in a macromodel also provides complexity management 

mechanisms such as abstraction and hierarchical decomposition that aid the 

comprehension of the information in a collection of models. Abstraction is a powerful 

mechanism for managing complexity by supporting top-down understanding but in order 

for a level of abstraction to be useful it must provide some form of summarization of the 

details that are omitted [M09]. As we discussed in Chapter 2, modeler intent is a type of 

summary of model content that is particularly well suited to supporting comprehension 

because it explains why a model contains the information it contains.  Thus, one way a 

macromodel supports comprehension is by providing this level of abstraction on a 

collection of models. Another key way that a macromodel supports the comprehension of 

model collections is that it allows structural information about the collection to be 

expressed that are otherwise missing. In particular, we can identify three types of 

structural information that a macromodel can express: the relationships between models, 

the hierarchically structure of model collections and the sets that index model collections. 

The first two of these types of structure have been shown to support the improved 

cognitive manageability of information, particularly for decompositions of large 

conceptual models into collections of views[M06]. The third kind of information 

represents a classification scheme [ISOC] over models and is similar to the kind of 
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abstraction that is widely used to organize information in order to aid comprehension, 

search and navigation.  

 

The ability to support automation arises as a result of the fact that the modeler intent is 

expressed formally and we provide a formal expression of this for both examples. We 

take this as a partial justification of this claim and we defer to Chapter 9 for an actual 

demonstration of the feasibility of automation. Finally, since our examples are static sets 

of models rather than a project in progress, we were not able to directly assess the use of 

the formalism for supporting model evolution. However, we discuss various plausible 

evolution scenarios to suggest how this could be applied.  

 

For each example, we present the results of the evaluation using the following structure: 

• The macromodel for the example is presented that formally expresses the 

modeler’s intent. This includes the model relationships, content criteria and 

decomposition criteria. Note that since we did not have access to the original 

modelers we have inferred the modeler intent from an analysis of the model and 

the supporting documentation. 

• In addition to analyzing the kinds of content criteria that are used for the example, 

each of the following types of added structural information is examined: 

hierarchical model collections, relationships and model collection indexing. The 

occurrences of these types of information is summarized in a table that is 

constructed according to Table 8.1. In addition to the summary, the particular 



www.manaraa.com

218 

 

interesting aspects of the structural information in the example are discussed in 

detail. 

• Each of the nine types of defects that have been identified (in chapters 5 and 7) as 

being detectable due to the expression of content and decomposition criteria are 

examined. The occurrences of these are presented in summary and detailed form. 

Table 8.2 lists the defect types and how their occurrences are counted. 

• Model evolution scenarios are discussed. 

 

Table 8.1. Types of structural information and how occurrences are counted. 

 

 Type of structural information Counting of occurrences 

Hierarchical model collections Number of diagram groups : 

The main macromodel for each model is not 

counted. Each contained macromodel found 

within a main macromodel at any containment 

depth is counted as one group. 

Number of hierarchies (depth) : 

Each macromodel containment tree is counted 

as one hierarchy. The depth of the hierarchy is 

the level of the deepest contained macromodel 

in the hierarchy. 

Relationships Number of relationships : 

Each occurrence of a relationship is counted 

as one. Content criteria are not counted as 

relationships. 

Index sets  Index set (uses): 

Each index set is counted. Each case in which 

a macromodel is indexed using this type is 

counted as a use of the index set. 
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Table 8.2. Types of defects and how occurrences are counted. 

 

 

 

Defect type Description How counted 

Naming 

inconsistency 

The same intent is expressed in multiple 

ways. 

If the intent is expressed in 

a single way then there is 

no inconsistency. If the 

intent is expressed in k 

ways then we count this as 

k-1 cases. 

 

Naming 

inaccuracy 

The name does not express the same 

concept as the content criteria. 

Each diagram is a case. 

Content 

inclusion 

The diagram includes information that it 

should not according to its content criteria. 

Each diagram is a case 

even if multiple incorrect 

inclusions occur. 

Content 

exclusion 

The diagram excludes information that it 

should not according to its content criteria. 

Each diagram is a case 

even if multiple incorrect 

exclusions occur. 

Weakly 

modeled info 

The inclusion conditions are weakly 

modeled in M. 

Each diagram is a case. 

Unmodeled info The inclusion conditions are not modeled 

in M. 

Each diagram is a case. 

Potential 

incompleteness 

Content in M may be missing according to 

the decomposition criteria. The diagram’s 

content is empty based on the content 

criteria. 

Each diagram is a case. 

Diagram 

inclusion 

A diagram is included in a macromodel 

that does not satisfy the decomposition 

criteria. 

Each diagram is a case. 

Diagram 

exclusion 

A diagram is missing from a macromodel 

that should be present according to the 

decomposition criteria. 

 

Each diagram is a case. 
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8.1 Application to PUMR Example 

The Private User Mobility dynamic Registration service (PUMR) is given as an example 

protocol developed and modeled using UML according to the standard set out by the 

European Telecommunications Standards Institute (ETSI) for protocol specifications 

[ET08]. The PUMR example consists of three UML models: a context model (4 

diagrams), a requirements model (6 diagrams) and a specification model (32 diagrams) 

and defines a protocol for integrating telecommunications networks in order to support 

mobile communications. Thus, for example, PUMR allows an employee using a mobile 

phone at her home company with a private exchange to roam to other private exchanges 

seamlessly. More specifically, it describes the interactions between Private Integrated 

Network eXchanges (PINX) within a Private Integrated Services Network (PISN). The 

following is a description from the document: 

“Private User Mobility Registration (PUMR) is a supplementary service that 

enables a Private User Mobility (PUM) user to register at, or de-register from, any 

wired or wireless terminal within the PISN. The ability to register enables the 

PUM user to maintain the provided services (including the ability to make and 

receive calls) at different access points.” [ET08, pg. 43] 

 

8.1.1 Expressing modeler intentions 

In this section we discuss the results of our analysis to express the modeler’s intentions 

for the 42 diagrams over the three UML models in the PUMR example. Since we did not 

have access to the original definers of these diagrams, we relied on the documentation in 

[ET08] of the diagrams to infer their intentions. Fortunately, the documentation is 
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substantial and detailed so that we have a high level of confidence that our results are 

reasonable. In the next section we present the macromodel for PUMR. This presentation  

includes the relationships, decomposition criteria and some of the content criteria for the 

individual models. The full results of the content criteria analysis is given in Appendix B 

and is omitted from the presentation when it leads to excessive complexity.  

 

Macromodel: type diagrams 

Figures 8.1 and 8.2 are type diagrams show the model and relationship types used in the 

PUMR example. The model and relationship types used are defined in detail in Appendix 

B. The relationship types are described informally in Table 8.3. Note that the first three 

types are constructed types that concretize abstract types. 

  

    

 

Figure 8.1. Abstract types. 

Sub 

Model 

DetailOf 

Eq 
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Figure 8.2. Concrete types. 
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Table 8.3. Summary of relationship types used in PUMR. 

 

Relationship type Description 
detailOf(T1, T2) detailOf(M1, M2) indicates that M1 expands on or details an element 

of M2. This relationship holds iff the following conditions are true: 
o M1 and M2 are submodels of the same model. 
o All the generators of M1 are elements of M2. 
detailOf() is a constructed relationship type and does not contain a 
mapping. 

submodelOf(T1, T2) sub(M1, M2) indicates that M1 is a submodel of M2.  sub() is a 
constructed relationship type and does not contain a mapping. 

eq(T, T) eq(M1, M2) indicates that the content of M1 and M2 is identical but 
are distinct copies of this content. Eq() is a constructed relationship 
type and contains a mapping. 

instanceOf(OD, CD) instanceOf(M1, M2) indicates that M2 contains the type information 
for the elements of M1. This relationship holds iff every object and 
link in M1 is an instance of a class and association, respectively, in 
M2. instanceOf() is a defined relationship type and does not contain a 
mapping. 

objectsOf(SD, OD) objectsOf(M1, M2) indicates that M2 contains the minimal set of 
objects and links required for the behaviour described by M1. This 
relationship holds iff the following conditions are true: 
o M1 and M2 have the same set of objects. If a message is passed 

from object X to object Y in M1 then there is a corresponding link 
in M2 between X and Y that the messages is sent over. 

objectsOf() is a defined transformation and contains a mapping. 

aggregationOf(OD, 
OD) 

refines(M1, M2) indicates that the elements of M1 are aggregates of 
elements in  M2. This relationship holds iff 
o Every object in B is expressed as an aggregation of a set of 

objects in A and every object in A is in exactly one such 
aggregation. 

o Every link in B is expressed as an aggregation of links in A and 
every link in A is in exactly one such aggregation. 

o The link aggregations must be consistent with the object 
aggregations of their endpoints. 

caseOf(SD, SD) caseOf(A, B) holds iff the following conditions are true: 
o Every object in B is refined into one or more objects in A and 

every object in A is in exactly one such a refinement. 
o Every message in B is specialized and then refined into one or 

more messages in A and every message in A is in exactly one 
such refinement. 

o The message refinements must be consistent with the object 
refinements  of their endpoints. 
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Macromodel: macromodel diagrams 

The macromodel for the PUMR example is presented in Figures 8.3 to 8.10. Figure 8.3 is 

the overview showing the three UML models and how they are related. Figure 8.4 shows 

the presentation of the ContextModel while Figure 8.5 shows this for the ReqModel. 

Figure 8.6 shows the overview of the SpecModel presentation and the subsequent figures 

show the content of particular contained macromodels within this. 

 

Figure 8.3. The main macromodel for PUMR. 

PUMR 

ContextModel: UML ReqModel: UML 

SpecModel: UML 

fC:UMLRefines 

fR:UMLRefines 
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Figure 8.4. Presentation of the Context Model. 
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Figure 8.5. Presentation of the ReqModel. 
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Figure 8.6. Top level of SpecModel presentation. 

SpecModel:UML 
<<view>> 

M50 - Specification 
model packages:PD 

*PUMR Messages:UML 
<<+view>>  

*PUMR Types:CD  
<<+view>> 

*QSig types:CD  
<<+view>> 

*QSIG Messages:UML 
<<+view>> 

M78 - QSIG basic service 
messages : CD 

M77 - QSIG message 
packages not specific to PUMR 

: CD 

M51 - Basic domain 
model (from Context 

Model): CD 

M52 - PUMR Object 
Model :OD 

Interaction 

instanceOf M57- PUMR Detailed 
Domain Model : CD 

*RegProc:SMD 
<<+view>> 

M58 - Registration 
Processing : SMD 

M59 - Registration 
Request : SMD 

detailOf 
(Class(“PINX”)

detailOf 
(Class(“HomePINX”)) 
 

ContextModel:UML  
<<view>>  {inc} 

M41 - Simple PUMR 
Domain Model:CD 

M43 - PUMR system 
architecture: OD 

instanceOf 

eq 

eq 

detailOf(State(“Registration 
Request”)) 
 



www.manaraa.com

228 

 

IntUnit [*] 
 
 

Interactions  

*:Set[Interaction] 

Interaction [*] :SD [*] 
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Figure 8.7. SpecModel - Interactions. 
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Figure 8.8. SpecModel – decomposition of messages on the basis of signal. 
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Figure 8.9. SpecModel – decomposition of messages on the basis of task. 
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Figure 8.10. SpecModel – type specifications. 
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Content criteria 

To give a sense for the diversity of content criteria of the PUMR diagrams, we 

summarize a few in Table 8.4. We could not infer the content criteria for three of the 

diagrams because the documentation was too vague. Of the remaining 39 diagrams, only 

seven required a detailed expression using inclusion conditions such as is used for 

diagram 62 while the remainder could be expressed compactly as expressions using a 

small set of predefined extractors.  

 

The predefined extractors are listed in Table 8.5 and their definitions can be found in 

Appendix B. They range from generic to domain-specific. The first group of three are the 

most generic and represent extractor constructors. The next group of eleven are particular 

extractors that apply to any UML model. The final group of four extractors are specific to 

the PUMR project. Within the generic UML group there are natural extractors 

corresponding to “large objects” within a UML model that have dedicated diagram types 

- e.g., activities, interactions and statemachines. The most common content criteria is to 

show the full content of these objects in a diagram (e.g., ADof(M:UML, K:One[Activity]). 

The variety of content criteria that can be associated with these depend on their ability to 

show partial information. For example, statemachine diagrams can also be used to show 

the content of a single composite state and so we have SMDofState(M:UML, 

K:One[State]). This capability can be used to decompose the presentation of a large 

statemachine across several diagrams. This is the case with diagrams 58 and 59 – 

together they depict the statemachine showing registration processing. A similar 
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possibility exists with large interactions and activities but no instances of these occur in 

the PUMR example.   

Table 8.4. Examples of content criteria from PUMR analysis. 

 

 Diagram Content Criteria 

40 - Context model 
packages : PD 
 

CCM40 := Proj(ContextModel, PD) 

 

44 - PUM Registration use 
case diagram: UCD 
 

CCM44 := UCDof(ReqModel,  

UsecasesForTask(ReqModel, “Registration”), UCD) 

 

56 - Example sequence 
diagram showing PUMR 
interrogation: SD 
 

CCM55 := SDof(SpecModel,  

       Interaction(SpecModel, “De-Registration”)) 

 

62 - Identification of the two 
QSIG signals used for 
carrying PUMR message 
info : CD 
 

CCM62 := [ 

   precondition := ∃qsig, pumr:SpecModel.Package ·  

                                SpecModel.name(qsig) = “QSIG” ∧                                                                 
                                SpecModel.name(pumr) = “PUMR”     

    QClass(c) := ∃c1: SpecModel.Class, p, p1: SpecModel.Package ·   

                           TC(SpecModel.ownedMember(p, qsig)) ∧  

                             SpecModel.ownedMember(c, p) ∧   

                           TC(SpecModel.ownedMember(p1, pumr)) ∧  

                              SpecModel.ownedMember(c1, p1) ∧   

                           TC(SpecModel.general(c1, c)) ∧ 
                              SpecModel.name(stereotype(c)) =    
                                                              “communication message”) 
] 
 

51 - Basic Domain Model 
(from Context Model): CD 
 

CCM51 := DirectPartsOf(SpecModel, ClassSet(SpecModel, 

{“PISN”})) 

 

58 - Statechart diagram 
showing the registration 
processing at the Home 
PINX: SMD 

CCM58 := RegProc – M59 

 

RegProc : SMD 
 

CCRegProc := SMDof(SpecModel,  
StateMachineForClass(SpecModel, 

Class(SpecModel, “Home PINX”))) 

59 - Statechart sub-
diagram showing the 
detailed processing 
of a registration request at 
the Home PINX: SMD 

CCM59 := SMDofState(RegProc,  

State(SpecModel, “RegistrationRequest”)) 
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Table 8.5. Predefined extractors used to express content criteria in the PUMR example. 

 

 
Predefined Extractor Result Type Summary Number 

of uses 

Proj(M:T, T1) 

T1 Extracts the maximal T1 
submodel of M. Assumes that 

T1 ⊆ T. 

1 

T(M:UML, S:One[String] 
One[T] Extracts the T element with 

name S 
10 

TSet(M:UML, S:Set[String]) 
Set[T] Extracts the T set model with 

names in S 
15 

SDof(M:UML, 
K:One[Interaction]) 

SD Extracts the SD that contains 
the full content of interaction K 

4 

WithStereotype(M:UML, 
M1:Set[string]) 

Set[Class] Extracts the set of classes with 
stereotype in set M1 

2 

UCDof(M:UML, 
M1:Set[Usecase]) 

UCD Extracts the UCD that shows all 
the relationships that the 
usecases in M1 participate in. 

2 

ADof(M:UML, K:One[Activity]) 

AD Extracts the AD that contains 
the full content of activity K 

4 

SMDof(M:UML, 
K:One[Statemachine]) 

SMD Extracts the SMD that contains 
the full content of statemachine 
K 

1 

SMDofState(M:UML, 
K:One[State]) 

SMD Extracts the SMD that contains 
the full content of state K 

1 

DirectPartsOf(M:UML, 
K:Set[Class]) 

CD Extracts the CD consisting of 
the classes K and all their direct 
aggregated classes 

2 

DirectSubsOf(M:UML, 
K:Set[Class]) 

CD Extracts the CD consisting of 
the classes K and all their direct 
subclasses 

4 

DirectSupersOf(M:UML, 
K:Set[Class] ) 

CD Extracts the CD consisting of 
the classes K and all their direct 
superclasses 

1 

ActivityForUsecase(M:UML, 
U:One[Usecase]) 

One[Activity] Extracts the activity owned by 
the use case U 

4 

StateMachineForClass(M:UML, 
K:One[Class]) 

One[Statema
chine] 

Extracts the statemachine 
owned by class K 

1 

TypeSpec(M:UML, 
M1:Set[Class]) 

CD Extracts the subclasses and 
aggregated classes of the 
classes in M1 

8 

MessagesForTask(M:UML, 
T:string) 

CD Extracts the set of message 
classes that relate to task T 

5 

InteractionsForTask(M:UML, 
T:string) 

CD Extracts the set of interactions 
that relate to task T 

3 

UsecasesForTask(M:UML, 
T:string) 

Set[Usecase] Extracts the set of use cases 
that relate to task T 

2 

 



www.manaraa.com

235 

 

 

8.1.2 Findings 

Added structural information 

Table 8.6 summarizes the quantity of structural information made explicit of the kinds 

identified in Table 8.1. The main contained macromodel for each UML model (i.e., three 

macromodels for: Context, Req, Spec) is are not counted. We make the following 

observations regarding the structural information. 

Rationale for diagram collection identification 

Although the PUMR example in [ET08] does not identify diagram collections beyond the 

main grouping based on the ContextModel, ReqModel and SpecModel, the PUMR  

macromodel has many additional contained macromodels. In this section, we discuss the 

rationale for identifying these.  

 

 

Table 8.6. Summary of the structural information made explicit in the PUMR example 

 

 

Structural information measure Value 

Number of diagram groups 15 

Number of hierarchies (depth)  5 (1), 1(2), 1(3) 

Number of relationships 16 

Index sets (uses) Task (3), Signal (1), Usecase (2) 
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Eight of the fifteen identified collections are included to indicate the implicit 

decomposition of a required, but unrealized, submodel. For example, consider the 

diagrams M58 and M59 that are reproduced in Figure 8.11. It is clear that these two 

actually represent the decomposition of the full state machine diagram for registration 

processing in the class HomePINX but this state machine diagram doesn’t actually occur 

explicitly in the PUMR example. Thus. we presume that the actual modeler intent is for 

M58 and M59 to implicitly decompose an unrealized state machine diagram 

RegProc:SMD
27

. This arrangement is shown in Figure 8.6 along with the fact that M59 

shows a detail of M58. It is important to note that the M58 and M59 are defined as views 

of RegProc rather than SpecModel and thus they are existentially dependent on RegProc. 

This is the case with all decompositions. 

 

Five of the remaining identified collections arise as a result of the evident intended 

application of indexed presenter. For example, in Figure 8.5., two collections are 

identified with the same structure but corresponding to different tasks. Note that the 

diagram numbers correspond to the order in which they occur in the document [ET08];  

thus, it should be clear that these were intended to be grouped together even though there 

was no explicit indicator of this. The interactions in Figure 8.7 is another example of this.  

 

Of the remaining two collections, both found in Figure 8.7, Interactions was assumed to 

exist to represent the set of consecutive sequence diagrams indexed by task and the 

anonymous collection of object diagrams occurs in order to express M52 as their sum. 

                                                 

27
 Our choice of name is evocative but arbitrary. 
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Figure 8.11. Diagrams M58 and M59 that decompose an unrealized state machine diagram. 

 

 



www.manaraa.com

238 

 

Index sets 

There are three index sets used by decomposers in the PUMR macromodel: 

• Task used three times (See Figures 8.5, 8.7 and 8.9) 

• Signal (See Figure 8.8) 

• Usecase used twice (See Figure 8.5) 

 

In Section 7.2.3 we characterized decomposers as having local vs. global scope and being 

generic vs. domain-specific. Based on this classification we can observe that Task  and 

Signal both represent domain-specific (i.e., PUMR-specific) indices but Task has a more 

global scope than Signal since it used in three places to decompose different parts of the 

ReqModel and SpecModel. This suggests that Task acts like a “dimension” that cuts 

across all of PUMR. In contrast Usecase is a generic basis for decomposing a set of 

activity diagrams but it has local scope. 

Alternate Decomposition 

While it is often the goal of a decomposition to minimize redundancy, sometimes this is 

foregone in order to achieve an informative rhetorical effect in the presentation of the 

model. PUMR has a good example of this. The macromodels Messages1 in Figure 8.8 

and Messages2 in Figure 8.9 show alternate decompositions of the same set of 

communication message classes, presumably to emphasize different aspects of these. 

Messages1, containing diagrams M63 – M66, decomposes the message classes on the 

basis of the signal that carries the message while Messages2, containing class diagrams 

M67 – M71, decomposes the message classes on the basis of the task type that uses the 
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message.  This juxtaposition of decompositions would not have been evident if the 

decomposition criteria had not been clearly defined.   

Defects detected 

Figure 8.12 summarizes the defects found due to our analysis. The number of each type 

of defect is determined according to the criteria given in Table 8.1. The complete list of 

the defects found is given in Appendix B. Here we discuss some of the noteworthy cases.  

 

Naming inconsistencies show up in with the pairs of diagrams “M43 - PUMR system 

architecture”/“M52 - PUMR Object Model” and “M41 - Simple PUMR Domain 

Model”/“M51- Basic domain model (from Context Model)”. These are named differently 

even though they are intended to be equivalent as shown by the eq relationships in Figure 

8.6. Another naming inconsistency occurs in the two groups of diagrams that show the 
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Figure 8.12. Defects found in PUMR example. 
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details for various data types in Figure 8.10. All of these have the same form for their 

content criteria – the application of the extractor TypeSpec to detail a set of data type (or 

enumeration) classes. When a single type T is detailed, the diagram is named “Type 

specification of T” – in all these cases we have omitted the name from the macromodel 

diagram since it is implied by the theTypes generator. However, when a diagram shows a 

group of types there is no fixed convention: e.g., “M73 – PUMR error codes”,“M72 - 

PUMR general data types”, etc.  

 

Naming inaccuracies are subtle defects that can cause confusion for a consumer. One 

example of this is diagram “M50 - Specification model packages.” Like, “M40 - Context 

model packages”, this suggests that the intent is to show all the packages in the model. 

With diagram M40, this is this case since its content criterion is defined by the extractor 

Proj(ContextModel, PD) that projects out all package diagram information from 

ContextModel. However with diagram M50, only a subset of packages of SpecModel are 

shown and it is not clear what the inclusion criterion is.  

 

To some extent, the low number of content inclusion/exclusion defects could be 

attributed to the fact that in expressing the content criteria we were trying to find the 

criteria that would best fit the existing diagrams. It is interesting that despite this, there 

were some clear defects that we were able to find.  For example, consider Figure 8.13 

showing diagrams M66 and M70. We inferred that the intent of M66 was to show the set 

of PUMR error messages; however, in attempting to define the content criteria for this we 

discovered that these classes seem to be identified in two ways: as subclasses of the class 
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PUM Errors and as classes with the suffix “Err” in their name. According to this 

combined criterion, M66 has an exclusion defect since it is missing the class 

PumInterrogErr found in diagram M70. In considering this we realized that this is 

probably a defect of the SpecModel itself and that PumInterrogErr ought to be a subclass 

of PUM Errors along with the other error classes. This would then make the content 

criterion of M66 simply be the set of subclasses of PUM Errors. This is an example of 

how the process of determining the correct content criterion could help detect defects not 

only in the diagrams but also in the model. 

 

All of the examples of weak modeling defects relied on naming conventions to identify a 

type of element in the inclusion conditions. For example, diagram M70  in Figure 8.13 

shows the different interrogation message classes. These are all identifiable by having the 

stereotype “communication message” and by having a name with the prefix 

“PumInterrog” in their name.  Cases that exhibited the unmodeled inclusion condition 

defect included diagram M44:UCD (in Figure 8.5) which shows the use cases for 

registration; however, there was no way to express the inclusion condition for registration 

use cases using only information in SpecModel.  

 

Cases of potential incompleteness in the model occur when the modeler intent for 

diagrams suggests that a certain diagram ought to exist even though there is no content in 

the model for it. There are several examples of this in PUMR and two can be seen in 
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Figure 8.5. The decomposition of ReqModel is indexed by Task, however, although there 

are five tasks, there are only ReqUnit contained macromodels for two of these: 

Registration and Deregistration. The remaining three tasks have no corresponding use 

cases or activity diagrams and this is probably an omission in the model. Another 

 

 

Figure 8.13. Diagrams M66 and M70 showing a discrepancy on error messages. 
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probable omission is the fact that the use case diagram M44 lists four use cases but there 

are only three activity diagrams (M45-M47) that elaborate the use cases. The modeler 

intent suggests that the set of activity diagrams is indexed by the set of use cases and thus 

there ought to be an activity diagram for each use case. 

8.2 Application to UML Metamodel 

The UML 2.0 specification [UML2] documents the large and complex UML metamodel 

using over one hundred diagrams. Thus, is a good example of a situation in which we can 

apply the techniques described in this thesis. In this example, we focus on the portion of 

the UML metamodel (henceforth, UMLMeta) relating to actions (Chapter 11 in the 

specification) and call this submodel ActionMeta. An Action is the fundamental unit of 

behavioural specification within a UML model and is used by other more complex 

behaviour specifications such as Interactions, StateMachines and Activities.  

8.2.1 Expressing modeler intent 

In total, nineteen diagrams are used to present ActionMeta. The macromodel reveals that 

this set of diagrams represents a three level hierarchical decomposition of the content of 

ActionMeta. We first discuss the decomposition criteria of the macromodel and then the 

macromodel itself. 

Action classes,  action types and entity operation types 

The model ActionMeta is structured around the class Action and its subclasses which are 

the different types of actions supported. For example, action classes include CallAction, 

SendSignalAction, DestroyObjectAction, etc. In all, there are 46 action classes. Based on 

our analysis of the nineteen diagrams, it is apparent that these action classes are further 
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classified into categories we call action types.  We expect that as the metamodel evolves 

the action classes within an action type may change and the set of action types itself may 

change but action types will remain as a primary kind of classification of the content of 

ActionMeta.  

 

A subset of the action classes deals with actions relating to entities such as objects, 

variables, links, etc. and for these, another kind of classification is evident as well. Entity 

action classes can mostly be categorized as either being a read operation or a write 

operation on the entity. Thus, we define entity operation types read, write and base for 

the entity actions not of the first two types.  

Macromodel: top level (decomposition criteria) 

Figure 8.14 shows that the macromodel of ActionMeta is completely structured as a 

hierarchy of indexed decompositions. At the topmost level, the content of ActionMeta is 

decomposed into four submodels on the basis of package using the generic ByPackage 

decomposer for EMOF models. Then, the content of each package submodel is further 

decomposed on the basis of the type of action described using the ByActionType 

decomposer. There are ten action types but not all are represented in each package. 

Finally, for some action types, the submodel is further decomposed. Here two different 

decomposers are used. The ByClassType is a generic decomposer that breaks the content 

of an EMOF model into submodels on the basis of the base classes much like the 

ByBaseClasses decomposer described in Chapter 7. The ByOperType decomposer breaks 

the content into submodels based on the type of entity operation being performed. This 

decomposer is only applicable to action types that operate on entities. 
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Macromodel: specific level 

Figure 8.15 shows the remainder of the macromodel. This expands each of the 

ByPackage decompositions shown at the bottom of Figure 8.14. 

 

Figure 8.14. ActionMeta macromodel – top level. 
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Content criteria 

The content criterion of ActionMeta is given as follows: 

        CCActionMeta := expandClasses(UMLMeta, classesInPkg(UMLMeta, ActionPackages)) 

 

The definitions of the primitive extractors used here are defined in Appendix A. The 

index set ActionPackages = {BasicActions, IntermediateActions, StructuredActions, 

CompleteActions} contains the four packages within UMLMeta in which the core content 

of ActionMeta is found. Thus, the content criterion of ActionMeta first extracts the set of 

classes in these packages and then expands these to include their attributes, superclasses 

and navigable associations.  

 

Table 8.7 shows the definitions of extractors used in defining the decomposition criteria 

for the four levels of decomposition. To get a better understanding of how these work to 

produce all the diagrams in decomposition of ActionMeta, we illustrate the generation 

process for diagram M5. First note that diagram M5 is part of the decomposition of 

MIntermediate which is the view of ActionMeta representing the contents of the 

intermediate package. The content criterion of MIntermediate uses the first extractor 

PDetail and is defined as: 

CCMIntermediate := PDetail(UMLMeta, Package(“IntermediateActions”)) 
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Figure 8.16 shows the construction of MIntermediate using this content criteria. The 

extractor classesInPkg(UMLMeta, Package(“IntermediateActions”)) first produces the 

submodel P1 that contains the classes in the “intermediate” package. Note that we only 

show a portion of this submodel here. Then the application of expandClasses to this 

submodel extends it to include the immediate superclasses and navigable associations and 

this results in MIntermediate. Diagram M5 is a view of MIntermediate and its content 

criterion is: 

CCM5  := ADetail(MIntermediate, ActionTypes.Invocation) 

Table 8.7. Extractors used for decompostion criteria in the ActionMeta example. 

 

Index model Definition 

ActionPackages PDetail(theModel, thePackage) :=  

    expandClasses(theModel ,  

        classesInPkg(theModel, thePackage)) 

ActionClassTypes ADetail(theModel, theActionType) :=  

    restrictTo(theModel,  

        expandClasses(ActionMeta,  

             supportingClasses(ActionMeta, theActionType)))                                     

ClassTypes CDetail(theModel, theClassType) :=  

    restrictTo(theModel, 

        expandClasses(ActionMeta,     

             classSubsOf(ActionMeta, theClassType)))           

OperTypes ODetail(theModel, theOperType) :=  

    restrictTo(theModel, 

        expandClasses(ActionMeta,  

            supportingClasses(ActionMeta, theOperType)))   
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First supportingClasses (ActionMeta, ActionTypes.Invocation) produces the submodel A1 

consisting of all the subclasses of the abstract class Action that are “invocation” actions 

expanded to include supporting classes. Then expandClasses adds the immediate 

superclasses and navigable associations to produce A2. Finally, the restrictTo operation 

yields diagram M5 shown with bold lines. 

 

8.2.2 Findings 

Added structural information 

Table 8.8 summarizes the amount of structural information made explicit by the 

macromodel. 

 

 

Figure 8.16. The generation of diagram M10. 
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Index sets 

It is interesting to note that this macromodel is completely expressed as a hierarchical 

decomposition and any diagram in it can be generated from its tuple of “indices.” For 

example, the indices of diagram M5 are [“Intermediate”, “Invocation”]. Thus, all the 

diagrams can be generated from relatively little information. One use of this is that it 

provides a simple way of generating or regenerating decompositions when the model 

changes.  

 

Another observation is that, as with the PUMR example, a combination of domain-

specific and generic decomposers are used. In this case, ByPackage and ByClassType are 

generic and could be used to decompose any EMOF model. In contrast, ByActionType 

and ByOperType are specific to the action class domain. 

 

Table 8.8. Summary of the structural information made explicit in the UML example. 

 

 

Structural information measure Value 

Number of diagram groups 8 

Number of hierarchies (depth)  1 (2) 

Number of relationships 0 

Index sets (uses) Package (1), Action type (4), Class type (2), 

Entity operation (2) 
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Level Alignment 

One way in which the structural information added by the macromodel helped to explain 

the rationale for the diagrams of ActionMeta, was by showing the “alignment” between 

the diagrams of different packages – there is a comprehension advantage to decomposing 

each package using the same principles of division. For example, the Link action type is 

further decomposed using OperTypes both in the IntermediateActions and 

CompleteActions packages. This could account for the fact that although diagrams M9 

and M16 are small enough (3 classes each) that they might be combined with their sibling 

diagrams, they are nevertheless kept separate. It seems that the value of maintaining a 

consistent decompositional structure for the same action types in different packages 

outweighs the value of having diagrams of balanced size. This kind of alignment holds 

across the entire decomposition and may be a new facet of decomposition quality not 

addressed by Moody’s quality principles  [M00]. 

Defects detected 

Figure 8.17 summarizes the defects found in the UML metamodel example. See 

Appendix A for the full description of these. Here we discuss some of the more 

representative and interesting findings.           

 

Since every diagram of ActionMeta can be generated from a small number of indices, it is 

reasonable to define a uniform naming scheme that reflects this. Each diagram is 

generated by a package, action type and optionally a class type or entity operation.  
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Despite this, there are significant naming inconsistencies. For example, the way the 

package is mentioned in the diagram name is not consistently followed. In the 

BasicActions package, every diagram name is prefixed with the word “Basic” while in 

the CompleteActions package, some diagrams have a suffix of “(CompleteActions)” – 

usually (but not always) when it has the same action type as a diagram in 

IntermediateActions or BasicActions. 

  

Although the content criteria were determined from the existing content of the diagrams, 

the indexing structure forces multiple diagrams to share the same content criteria 

(differing only in the generator values). Since this means that this shared content criteria 

is a “best fit” to the set, it is possible to discover defects with diagrams that do not fit as 

well (i.e., are “outliers”). This allowed us to detect two cases of content inclusion defects. 
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Figure 8.17. Defects found in UML metamodel example. 
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Specifically, diagram M3 contains three extra elements that are not accounted for by the 

content criteria and diagram M10 contains two extra elements.  

 

Given the index models, all the extractors for diagrams in ActionMetaX are completely 

determined. Thus, all of the causes for weakly modeled or unmodeled information defects 

in ActionMeta arise due to the index models. Furthermore, both ByPackage and 

ByClassType are generic decomposers and so the extractors for ActionPackage and 

ClassTypes , respectively, are completely determined.  The index model OperTypes is 

fully determined but relies on weakly modeled information since it uses naming 

conventions rather than a modeled relationship to determine which action classes 

correspond to operation types. For example, the nine actions classes with operation type 

Read can be identified by having the prefix “Read” or “Test” on their name. The 

drawback of weakly modeled information is that it relies on informally enforced 

conventions and these may not be properly managed as the UML metamodel evolves. 

 

The content criteria of ActionTypes are partially underdetermined since there is not 

enough information in ActionMeta in all cases to determine to which action type an 

action class belongs. In particular, of the ten action types, the membership in six of them 

can be determined by whether a class extends an abstract base class. For example, the set 

of action classes of action type “Invocation” are exactly those that are the subclasses of 

the abstract class Invocation. However, the classes of action type “Object” have no such 

abstract class and so these must be explicitly enumerated within the Object action type in 

ActionTypes. The fact that most of the action types are determined by an abstract base 
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class suggests that a plausible and consistent mode of repair is to add an abstract base 

class to ActionMeta for all “Object” action classes. Fixing this for the other three action 

types with this problem (“Link”, “Misc” and “AcceptEvent”) would ensure that the 

concept of an action type is modeled within ActionMeta and not just within the diagrams 

of it. 

 

The strong indexing of the diagrams in ActionMetaX provides several opportunities to 

check for potential incompleteness of ActionMeta. For example, within the 

decomposition of package CompleteActions, there is no diagram (or group) 

corresponding to the action types “Action”, “Invocation”, “StructuralFeature” or “Misc”. 

Similarly, there is no class type Pin, EndData or Qualifier in the Action group within 

StructuredActions.  

8.3 Summary 

In this chapter we applied the techniques for expressing modeler intent described in this 

thesis to two example modeling projects. A key objective here was to assess whether the 

claims about improving model quality and comprehension could be substantiated. Table 

10.1 summarizes the results.  We take these results to support the claim that expressing 

the role level can improve model quality because in both examples a significant number 

of defects were found that could not have been identified without expressing the modeler 

intent. We also take the results to support the claim of improved comprehension because 

in both cases a substantial amount of intent-related information is added and as discussed 

at the start of this chapter, this kind of information has been shown to support 

comprehension.  
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Some additional interesting findings that impact comprehension include the following: 

• In the PUMR example, the same information about messages is decomposed in 

two alternative ways in order to highlight different aspects of it. This was not 

evident until the macromodel was constructed.  

• There are many examples of unrealized views whose presence is implied by the 

fact that a subset of diagrams are intended to decompose them. These unrealized 

views are only evident in the macromodel but are crucial to understanding why 

certain subsets of diagrams exist. 

• In the UML example, the entire set of diagrams forms a tight decomposition 

hierarchy. In fact, the content criteria for all the diagrams is formed from 

composing just four extractors by using different combinations of index values. It 

is quite surprising that the content of all the 19 diagrams could be constructed 

from such little information in a systematic way. This systematicity helps to 

explain some of the “unintuitive” aspects of the diagrams such as why some of the 

diagrams seem unusually small or large. 

• Both examples use a mixture of generic and domain-specific extractors and 

decomposers. This shows that the use of generic expressions of intent predefined 

at the method-level is useful and can reduce the effort required to express and 

understand the expressions of intent. However it also shows that this by itself is 

insufficient to express all the modeler intent at the project-level.  
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In addition to quality and comprehension, the fact that we were able to formally express 

most of the modeler intent in these examples supports the claim that this could be used to 

drive automation. The prototype described next in Chapter 9 further supports this 

conclusion. 

 

Table 8.9. Summary of evaluation results 

 

Finding PUMR UML 

Defects or potential defects 28 28 

Content Criteria 42 19 

Relationships 16 0 

Indexed decompositions 6 4 
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Chapter 9  

Tool Support 

In this chapter we present the details of the prototype implementation MCAST 

(Macromodel Creation and Solving Tool)
28

 that uses a model finder to solve macromodel 

conformance problems. The objective in creating the prototype was to show that the 

formal expressions of modeler intent found in macromodels can be feasibly used to 

support automation. 

 

MCAST is built in Java on the Eclipse modeling frameworks (EMF, GMF, GEF). Figure 

9.1 shows the architecture of MCAST. Macromodels can be created or edited and then 

the Solver module, that incorporates the Kodkod [TJ07] model finding engine, can be 

used to solve macromodel conformance problems using simplified macromodels.  

 

                                                 

28
 An earlier implementation of macromodels was the Model Management Tool Framework (MMTF) 

[SCE07] but this has since evolved in a different direction. 
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As discussed in Chapter 6, there are different automation usage modes for macromodels 

including conformance checking and extension to conformance where the latter allow can 

be used to synthesize models and mappings and do conformance checking with 

incomplete information. In this chapter we describe the details of the Solver module and 

its use in these modes of operation. Since a macromodel assumes the existence of a set of 

model and relationship types, we begin by describing the implementation of these within 

MCAST.  

9.1 Defining model and relationship types 

MCAST leverages the modeling infrastructure provided by Eclipse. The EMF (Eclipse 

Modeling Framework) provides a metametamodel called Ecore. A simplified view of this 

is shown in Figure 9.2. The sorts and predicates of a metamodel signature are represented 

by EClass and EReference elements, respectively. An EReference represents a binary 

predicate from its containing EClass to the target EClass given by the value of eType. 

The multiplicity information of an EReference applies to the target EClass.  

 

  

 

 

Figure 9.1. MCAST Architecture. 

Eclipse Services   
(GMF, EMF, etc.)   
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EAnnotations allow additional application-specific information to be included within a 

metamodel and can be attached to any model element. MCAST assumes that every 

metamodel T contains a root EClass with name T and marked with the annotation “Root”. 

In addition, it can have the annotation “Model”, “Relationship” or “Macromodel”. 

Annotations are also used to store metamodel constraints within the metamodel and these 

are expressed in the Kodkod relational logic-based rule language. Since Kodkod does not 

provide a textual notation for its rule language, MCAST provides one. To accomplish 

this, the ANTLR parser generator for LL(k) parsers was used [ANTL] to construct a 

parser and translator of the MCAST textual notation to internal Kodkod rules expressed 

as Java objects. The grammar for the MCAST notation for the Kodkod rule language is 

given in Appendix D.  

 

In the formal treatment given in Chapter 4, relationship types are expressed using a 

relator model plus metamodel morphisms. In MCAST we exploit the fact that within 

EMF,  metamodels can directly reference other metamodels and thus, rather than 

replicate the elements of the endpoint model types within the relator metamodel, they are 

instead expressed as external references into the endpoint metamodels. The result is that 

the relator metamodel contains only the parts that are unique to the relationship type – 

i.e., the mapping content. 
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Figures 9.3 shows the signature portion of the metamodel for the ObjectsOf relationship 

type defined in this way
29

. Note that although the signatures of the OD and SD 

metamodels appear to be included in Figure 9.3, these are actually only “shortcuts” to the 

external metamodels. The shortcut symbol is indicated in the lower left corner of each 

                                                 

29
 This is based on the definition of objectsOf in Chapter 4 and not the one used in the PUMR example of 

Chapter 8. 

ENamedElement
name : String

ETypedElement
ordered : boolean = true

unique : boolean = true

lowerBound : int

upperBound : int = 1

many : boolean

required : boolean

EClassifier

0..1

+eType

EReference EAttribute

EModelElement

EAnnotation
source : String

details : EStringToStringMapEntry

0..*0..*

+eAnnotations

EStructuralFeature EClass
abstract : boolean0..*0..*

+eStructuralFeatures

0..*

+eSuperTypes

0..*

0..1

 

 

 

Figure 9.2. The simplifed Ecore metametamodel. 
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external element by the small arrow in a box. Figure 9.4 shows the constraints portion of 

the ObjectsOf metamodel using our textual version of the Kodkod language.  

 

 

 

 

 

 

Figure 9.3. The signature part of the ObjectsOf metamodel. 
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Constraints 

 

// every object in the sd is mapped to an object in the od 

[all of:ObjectsOf][all o:((of.ObjectsOf_Sd).SD!SD_Objects)] o in     

     ((IdObject_Od.((of.ObjectsOf_Od).OD!OD_Objects)).IdObject_Sd);  

[all of:ObjectsOf][all o:((of.ObjectsOf_Sd).SD!SD_Objects)] one  

      IdObject_Sd.o; 

 

// every message in the sd is SentOver to a link in the od 

[all of:ObjectsOf][all m:((of.ObjectsOf_Sd).SD!SD_Messages)] m  

    in ((SentOver_Od.((of.ObjectsOf_Od).OD!OD_Links)).SentOver_Sd);  

[all m:SD!Message]one SentOver_Sd.m; 

 

// incidence preservation 

[all so:SentOver][some ios:IdObject][some ioe:IdObject]  

   {(so.SentOver_Sd).SD!Message_StartObject = (ios.IdObject_Sd)} and    

   {(so.SentOver_Sd).SD!Message_EndObject = (ioe.IdObject_Sd)} and  

   { 

     { 

      {(so.SentOver_Od).OD!Link_StartObject = (ios.IdObject_Od)} and  

      {(so.SentOver_Od).OD!Link_EndObject = (ioe.IdObject_Od)} 

     } or { 

      {(so.SentOver_Od).OD!Link_StartObject = (ioe.IdObject_Od)} and    

      {(so.SentOver_Od).OD!Link_EndObject = (ios.IdObject_Od)} 

     } 

    }; 

 

// every object in od has an object in sd mapped to it 

[all o:OD!Object] some IdObject_Od.o; 

 

// every link in od has a message in sd mapped to it 

[all l:OD!Link] some SentOver_Od.l; 

 

 

Figure 9.4. The constraints part of the ObjectsOf metamodel. 
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9.2 Using the solver with macromodel conformance problems  

MCAST allows the type diagram of a macromodel to be defined as an Ecore metamodel 

that extends the base metamodel shown in Figure 9.5. Each model and relationship type 

is given as a subclass of classes Model and Relationship, respectively. These carry a static 

attribute typeHref to reference the Ecore metamodels they denote. A macromodel based 

on this type diagram is then defined as an instance of this Ecore metamodel.  

 

The Solver takes as input, a macromodel with a subset of the model and relationship 

elements containing references to existing artifacts (i.e., models and relator models) via 

the attribute contentHref. In addition, any model or relationship element may be marked 

incomplete by setting attribute isComplete = FALSE (default = TRUE).  A solution to the 

macromodel conformance problem for this macromodel is then a set of artifacts assigned 

to the model and relationship elements that includes the existing artifacts and extensions 

to artifacts marked incomplete that satisfy the constraints expressed by the macromodel.  
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Figure 9.5. Example type diagram as an extension of a base metamodel. 
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The Solver finds such a solution by constructing and solving a corresponding Kodkod 

model finding problem. This can be used with the different conformance modes as 

follows: 

• Conformance checking mode: If the input consists has all of the realized elements 

marked as complete and assigned to existing artifacts then a solution exists to the 

Kodkod problem iff this is a conformant collection of artifacts.  

• Extension-to-conformance mode: If some of the model and relationship elements 

are marked as incomplete, then Kodkod will attempt to synthesize extensions to 

these that result in a conformant collection of artifacts. Recall from Chapter 6 the 

two  ways to use this mode: 

o Synthesis. When a solution is found and models and relationships are 

extended as part of finding a conformant solution they are guaranteed to 

be consistent with the existing models and relationships (in the sense that 

all constraints are satisfied) but this does not mean they are necessarily 

correct since there may be many possible consistent extensions. When the 

solution is unique, however, then it must be correct and hence this 

provides a way to do model and relationship synthesis.  

o Conformance checking with incomplete information. If a solution cannot 

be found, this indicates that there is no way to consistently extend the 

incomplete models and relationships and hence the existing artifacts are 

definitely non-conformant even though they are incompletely specified.  
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9.3 Solver 

MCAST solves macromodel conformance problems by translating them to Kodkod 

model finding problems. The overall steps of this algorithm are as follows: 

1. Translate macromodel conformance problem to Kodkod problem. 

2. Perform the Kodkod model finding operation 

3. Reconstruct EMF models from the Kodkod solution. 

 

Of these steps, the key algorithm is step (1). The reconstruction of the resultant EMF 

model in step (3) is a direct reversal of the construction of the Kodkod problem in step 

(1). We first describe what a Kodkod problem is and then we present the algorithm for 

translating a macromodel conformance problem to a Kodkod problem.  

9.3.1 Kodkod problems 

A Kodkod problem is a 3-tuple K = 〈Rels, Formula, Universe〉 consisting of the 

following: 

• Universe : A set of atoms from which all tuples in a solution are built. 

• Rels : A set of relation declarations which includes the arity of the relation as well 

as its lower bound and the upper bound. The lower bound is the set of tuples of 

atoms that must occur in every solution. The upper bound is the set of tuples of 

atoms that may occur in a solution.  

• Formula : A relational logic expression over the relations Rels expressed using 

Kodkod’s rule language.  
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A solution SolK = {TR | R ∈ Rels} to K consists of a collection of sets TR of tuples 

assigned to the relations such that Formula is satisfied. Note that the tuples in TR  are 

drawn from the upper bound for R and will always contain the tuples in the lower bound 

for R. Kodkod finds solutions by translating K into a SAT problem and uses one of the 

many available SAT solvers to solve this problem.   

9.3.2 Macromodel translation algorithm 

A solution to a macromodel conformance problem Q = 〈M:T, C〉 is obtained by extending 

the models that are marked incomplete with additional elements and predicate instances 

so that the resulting set of models is conformant with the macromodel constraints. The 

macromodel conformance problem Q can be translated to an equivalent Kodkod problem 

KQ as follows: 

1. Translate all signature elements in metamodels referenced by T to relation 

declarations to form RelsQ  

2. Translate all constraints in metamodels referenced by T to construct the formula 

FormulaQ 

3. Translate the existing content of models/relationships referenced by M  to define 

atoms in UniverseQ. and  to form the lower bounds on the relations in RelsQ.  

4. Construct the upper bounds on the relations in RelsQ as the lower bounds plus 

additional tuples to accommodate the possible extensions of the models/relationships 

marked incomplete. This also requires additional atoms in UniverseQ that represent 

possible new elements in these models/relationships. 
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Making the existing content of models/relationships the lower bound in step (3) ensures 

that every solution will be an extension to the existing content. In step (4), the upper 

bounds define which models/relationships can be extended and by how much.  

 

The detailed algorithm for translating a macromodel conformance problem into a Kodkod 

problem is shown in Figures 9.6 and 9.7. The first part handles steps (1) and (2) and the 

second part handles steps (3) and (4). Since Kodkod is a bounded model finder, it is 

necessary to specify an amount by which incomplete models/relationships can be 

extended. For the current prototype this is accomplished by using a single integer 

extension parameter next as an input to the translation algorithm. This is interpreted as 

saying that each type of element in an incomplete model/relationship can be extended by 

next elements. For example, if next = 3 and there is an incomplete model 

M1:ObjectDiagram in M, then in a solution the extended version of M1 may have up to 3 

more Object  elements and up to 3 more Link elements.   

 

In the first part of the algorithm, from each metamodel T, EClasses (i.e., sorts) are 

translated to unary relations and EReferences (i.e., predicates) are translated to binary 

relations and are named using the names from the metamodels (lines 5, 7 and 11). For 

example for T = ObjectDiagram we get unary relations ObjectDiagram!ObjectDiagram, 

ObjectDiagram!Object, ObjectDiagram!Link, and binary relations 

ObjectDiagram!ObjectDiagram_links, ObjectDiagram!ObjectDiagram_objects, 

ObjectDiagram!Link_startObject and ObjectDiagram!Link_endObject. These are the 

names used to refer to relations within rules expressed using the MCAST rendering of the 
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Kodkod rule language. The qualifier  “ObjectDiagram!” is used to avoid name clashes 

since many metamodels are merged into one set of relations, however this can be omitted 

within rules when there is no referential ambiguity. As a convenience for expressing 

rules, when EClass S is not an abstract class and has subclasses, a special unary relation 

named T!@@S is defined that represents the instances of S that are not found in any of its 

subclasses (line 7).  

 

The value of Formula is constructed as a conjunction of constraints that come from three 

sources: subclass relationships (line 9), multiplicities on EReferences (line 12) and 

explicitly expressed rules as annotations within the metamodel using the MCAST 

rendering of the Kodkod rule language. 

 

Part 2 of the algorithm translates the models referenced by the input macromodel Minp 

and builds the Universe, lower bounds and upper bounds on the relations in Rels. 

EObjects are translated to atoms in the Universe in line (17) - atoms are qualified with the 

model name so that they are unique across Minp. For incomplete models/relationships, next 

additional “extension” atoms are defined for each EClass and added to the Universe 

(lines 20-21). The lower bounds for relations corresponding to EClasses and EReferences 

consist of the content of the existing models (line 19 and 29). Note that relationships may 

contain EReferences whose target elements are outside of the relationship and in one of 

the endpoint models that are related by the relationship. This is why in line 29 and 31, the 

expression model(S2) is used as the model for the target element rather than M. The upper 

bounds for complete models/relationships are the same as the lower bounds and thus will 
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not be extended (lines 25 and 33). The upper bounds for incomplete model/relationships 

use the additional extension atoms (lines 23 and 31).  

 

If we consider the worst-case complexity of this algorithm, part 1 is O(nc+nr) where nc is 

the number of EClasses and nr is the number of EReferences. Part 2 has complexity O(no 

+ ncnext  + nr(nc + next)
2
)  where no is the number of EObjects in the existing models. The 

second and third terms are due to lines 21 and 31, respectively. These are required in 

order to build a sufficiently large upper bound for incomplete models and relationships. 

 

9.4 Discussion 

The exercise of defining and implementing the macromodel conformance problem 

solving algorithm using Kodkod validates the idea that support for these problems can be 

automated; however, it also highlights a number of problems with this approach to 

automation. First, since the (bounded) relational model finding problem is NP-complete, 

the problem of finding a model that satisfies a set of first order constraints (e.g. role 

constraints as we have discussed them) is intractable. This fundamentally limits the 

scalability of the approach. Second, since determining whether a set of first order 

constraints has a model, is in general undecidable, we cannot determine when to stop 

increasing the bound on a model finder and “give up” because there exists no model.  

 

In our case, the bound represents the amount by which we can extend an incomplete 

model and is defined by the parameter next. The first problem can be “managed” by 

providing user control over the bound that is used. For the second problem, fortunately, 
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there are some common cases in which it is possible to compute maximal bounds for 

model extension in the sense that if a conformant extension cannot be found within the 

bounds then one does not exist. For example, a mapping such as objectsOf  defined in 

Figures 9.3 and 9.4 is bounded by the size of the models on its endpoints since it can have 

no more IdObject elements than Object elements in the source SD and no more SentOver 

elements than messages in the source SD. Thus, if the SD is considered complete and the 

objectsOf mapping is incomplete then no conformant extensions of the mapping can 

exceed the bounds defined by the SD.  

 

In general, the only way to surmount both of these problems is to limit the class of role 

constraints that can be expressed to one for which the model finding algorithm is 

tractable and the maximal bound is decidable. We leave the further investigation of this to 

future work. 

9.5 Summary 

In this chapter we describe in detail the MCAST prototype for solving macromodel 

conformance problems using the Kodkod model finder. The objective of creating 

MCAST is to validate the claim that macromodels can be used to support automation in 

modeling. To this end, we describe the algorithm that is used for translating a subset of 

the macromodel language into Kodkod and discuss how MCAST is used to automate the 

conformance checking and extension-to-conformance usage modes of macromodels.   
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Algorithm. TranslateMacromodel 

Input: Macromodel Minp with metamodel Tinp and extension parameter next 

Output: Kodkod problem K = 〈Rels, Formula, Universe〉 

1: Rels = ∅, Formula = TRUE, Universe = ∅ 

2: // Translate metamodels to build Rels and Rules 

3: for every metamodel T referenced by Tinp : 

4:     for every EClass S ∈ T :  

5:         add unary relation “T!S” to Rels 

6:         if S is not an abstract class and has subclasses:  

7:             add unary relation “T!@@S” to Rels 

8:         if S has subclasses {S1, S2, … ,Sn} :  

9:             add constraint “T!S = T!S1 + T!S2 + … + T!Sn” to Formula 

10:     for every EReference P(S1, S2) ∈ T :  

11:        add binary relation “T!S1_P” to Rels  

12:        add constraints on T!S1_P  to Formula  to implement the multiplicities of P  

13:     for every constraint R in an annotation A ∈ T : add R to Formula 

 

Figure 9.6. The algorithm for translating a macromodel to a Kodkod problem (part 1). 
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14: // Translate models to build Universe, relation upper bounds and lower bounds 

15: for every model or relationship M with type T referenced by Minp : 

16:     for every EObject o ∈ M :  

17:         add atom Atom[o, M] to Universe 

18:     for every EClass S ∈ T  :  

19:        LowerBound[S, M] = {Atom[o, M] | o ∈ M and o is of type S} 

20:         if M is marked incomplete :              

21:             Ext[S, M]  = {Atom[S__1, M], Atom[S__2, M], …, Atom[S__next, M]} 

22:             add Ext[S, M]  to Universe 

23:             UpperBound[S, M] = ∪{Ext[S1, M] | S1 is S or a subclass of S} ∪  

                                              LowerBound[S, M] 

24:         else 

25:             UpperBound[S, M] = LowerBound[S, M] 

26:         add LowerBound[S, M] to lower bound for relation T!S in Rels 

27:         add UpperBound[S, M] to upper bound for relation T!S in Rels 

28:     for every EReference P(S1, S2) ∈ T  :   

29:         LowerBound[P, M] = {〈Atom[o1, M], Atom[o2, model(S2)]〉 | P(o1, o2) ∈ M } 

30:         if M is marked incomplete :  

31:             UpperBound[P, M] = UpperBound[S1, M] × UpperBound[S2, model(S2)] 

32:         else 

33:             UpperBound[P, M] = LowerBound[P, M] 

34:         add LowerBound[P, M] to lower bound for relation T!S1_P in Rels 

35:         add UpperBound[P, M] to upper bound for relation T!S1_P in Rels 

36: return Rels, Formula, Universe 

 

Figure 9.7. The algorithm for translating a macromodel to a Kodkod problem (part 2). 
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Chapter 10  

Conclusion 

Modeling is used widely within software engineering and it has been studied from many 

perspectives; however, a perspective that has received little attention is the role of 

modeler intent in modeling. Since a model is a linguistic artifact, the modeler is seen as 

both the utterer of the model (as linguistic expression) and the creator of the model (as 

artifact). Correspondingly, knowing the intent of the modeler is valuable both for 

determining how the model should be interpreted semantically and for assessing its 

quality. Furthermore, formal expressions of this intent allow automated support for these. 

Despite the value that the knowledge of modeler intent would provide, there are no 

adequate means in the current state of modeling practice for expressing this information. 

The focus of this thesis is to address this gap by providing mechanisms for expressing 

modeler intent both explicitly and formally. 

10.1 Summary of approach 

We approached this problem by first recognizing that the purpose of a model is always to 

provide a particular set of information required by stakeholder activities. Then when 

modelers create a collection of models in order to satisfy the requirements of 

stakeholders, they do so with an idea of what role each model plays in the collection – 

i.e., what information it should contain and how this information is related to the 
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information in other models.  The specification of these roles is what we refer to as the 

expression of  modeler intent. A key contribution of this thesis is the identification of this 

“role level” as being an important aspect of a modeling project alongside the “model 

level” at which the content of models is created.  

 

We presented a framework that incorporates four components of modeler intent at the 

role level: the existential intent for a model that arises in response to the need for 

information by stakeholders, the content criteria that express what information the model 

is intended to contain, the model relationships that express how models are intended to 

constrain one another and the decomposition criteria that express the intent behind how a 

model is decomposed into a collection of models. A major contribution of this thesis is 

the specification of the macromodeling language as a new modeling language designed 

for the role level that supports the expression of all four aspects of modeler intent.  

 

The macromodeling language is based on a formal approach to expressing model 

relationships and relationship types using metamodels. Relationship types combine the 

definition of mapping information and constraints in order to define standard ways that 

models can be related. This also allows various properties of relationships to be 

rigorously defined. In particular, a relationship type property identified as having central 

importance is “partiality” and many commonly used relationship types such as 

submodelOf, abstractionOf, refinementOf, etc. in software engineering have this property. 

Partiality relationship types represent different ways that one model can carry a part of 

the information in another model and are the basis for our approach to expressing content 
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criteria and decomposition criteria. 

 

A general approach to formally defining content criteria was proposed based on the idea 

that the information in model could be characterized in terms of the precise partiality 

relationship it has to a larger base model. Furthermore, the fact that a partiality 

relationship can provide the means for model decomposition allows us to use it as a 

general basis for defining decomposition criteria. These were both developed in detail for 

the special case of the submodel partiality relationship type. This case is of particular 

relevance in modeling practice because a model is typically presented as a set of 

interrelated diagrams that represent different submodels of the model.  

 

The content criterion of a submodel (or diagram) is defined as the specification of the 

particular portion of the base model that is intended to be contained within the submodel. 

This is expressed at the role level as a view that includes a query-like transformation, 

called an extractor, that can extract the intended submodel from the base model. 

Extractors can be composed so that more complex extractors can be defined from simpler 

ones and they can be parameterized so that different submodels with similar intent can be 

defined by providing different parameter values.  

 

The approach to defining decomposition criteria is based on specifying collections of 

views that decompose their base model. Such a specification is called a decomposer. 

Decomposers can be composed to define decomposition criteria for complex hierarchical 

decompositions. Of particular interest are “indexed decomposers” that use parameterized 
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extractors to define a collection of views by using an “index model” to provide a set of 

parameter values. Indexed decomposers have natural properties that support model 

comprehension. In addition, they can be defined in a simple graphical way using 

macromodels. 

10.2 Value and contributions 

Throughout this thesis we have discussed four areas of value that explicit and formal 

expressions of modeler intent could provide: improving model quality by allowing 

modelers to confirm that the intent is correct and that the models conform to the intent; 

improving model comprehension by helping model consumers to understand the context 

and the basis for model content; supporting model evolution because expressions of intent 

can precede and guide the creation of model content and supporting automation by using 

formal expressions of intent to drive tools.  

 

We can summarize our contributions to these areas of value as follows: 

• Existential intent.  

o (quality, evolution) A model role represents the intent that a given model 

should exist in a project. When a model role exists without a model 

playing it we consider this to be a violation of an existential intent. 

Depending on the context this can either be seen as indicator of 

incompleteness (quality) or as a directive to modelers to create such a 

model (evolution). 
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• Content criteria.  

o (quality) We identified six types of model defects that require content 

criteria to detect: inclusion/exclusion defects on diagram content, 

inconsistency and inaccuracy defects on model names, and two kinds of 

potential defects on model completeness.  

o (comprehension) We also showed that content criteria is important 

because it reveals implicit information and context assumptions that are 

needed by stakeholders in order to interpret a model correctly. 

o (automation) Finally, we defined a systematic approach to defining formal 

content criteria that are amenable to tool support.  

• Relationships. The definition and use of relationship types as first class entities is 

a contribution of this thesis.  

o (automation) We defined a generic and formal approach to defining 

relationship types based on Institution theory [GB92] that is applicable to 

any metamodeling language.  

o (comprehension) Relationship types represent a commonly recurring kind 

of intent about how models can be related. As such they are provide a 

meaningful level of abstraction over sets of constraints that can hold 

between models.  

• Decomposition criteria.  

o (quality) We identified three types of defects can only be detected by 

using decomposition criteria. Diagram exclusion/inclusion defects are due 

to the violation of intent by the exclusion or unnecessary inclusion of 
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diagrams while the existence of intended, but empty, diagrams can 

indicate the incompleteness of the base model for the diagram.  

o (quality, evolution) In addition to defining decomposition criteria, 

decomposers also provide a mechanism for enforcing standards and best 

practices since they can be designed to yield desirable decomposition 

qualities such as non-redundancy, unity, etc. [M00].  

o (comprehension) Indexed decomposers have the desirable property that 

the index model acts as a kind of classification scheme over the base 

model by providing the “principle of division” by which it is decomposed. 

This provides a meaningful level of abstraction over hierarchical 

decompositions.  

o (quality, evolution) Indexed decomposers also enforce a consistent 

application of content criteria for different views within a decomposition.  

o (automation) Finally, since decomposition criteria are built using content 

criteria they enjoy the same level of formality in their definition. 

• Macromodels. Macromodels represent two central contributions of this thesis: the 

identification of the role level as a key part of modeling and the definition of a 

modeling language for the role level by providing a unified means for expressing 

the different types of modeler intent in the intent framework.  

o (comprehension) Macromodels provide a level of abstraction on the 

collection of models in a project that is particularly appropriate for the task 

of understanding the purpose of models and how information is distributed 

over the models.  
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o (evolution) A macromodel also provides a means for top-down modeling 

by defining the information architecture of a set of models that guides and 

constrains team-based model development.  

o (quality, automation) Several reasoning scenarios based on constraint 

satisfaction can be defined in terms of macromodel semantics including: 

conformance checking, synthesis, change propagation, etc.  

10.3 Summary of the evaluation 

In order to evaluate some of the claimed benefits of the techniques described in this 

thesis, we “reverse-engineered” the role level for two example modeling projects. The 

objectives here were twofold. First we could assess the claim about improved model 

quality by determining if defects were found. Second we could assess the claim about 

improved model comprehension by determining the quantity of implicit intent that is 

revealed,  since as discussed in Chapter 8, this information could be shown to correlate 

with improved model comprehension.  

 

The first example is a UML project used to define a telecommunication protocol for 

mobile telephone roaming called the Private User Mobility dynamic Registration service 

(PUMR). The second example is a MOF (Meta-Object Facility) metamodeling project 

that represents the portion of the UML 2.2 metamodel dealing with the UML concept of 

actions.   In both cases, the macromodel including content criteria, relationships and 

decomposition criteria was specified and analyzed. Table 10.1 (reproduced from Table 

8.9) summarizes the results.  We take these results to support the claim that expressing 

the role level can improve model quality because in both examples a significant number  
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of defects were found that could not have been identified without expressing the modeler 

intent. We also take the results to support the claim of improved comprehension because 

in both cases a substantial amount of intent-related information is added.  

   

In order to assess the claim about formal intent supporting automation, a prototype was 

developed for solving macromodel conformance problems in order to test the viability of 

using a macromodel in various automation scenarios. The prototype translates the 

constraints expressed within a macromodel into a Kodkod [TJ07] model finding problem 

in order to automate the checking of a project for conformance to the modeler intent 

expressed in a macromodel. An interesting result here is that in some cases it is possible 

to check conformance even with incomplete models and mappings in the project. From 

our success in creating such a prototype we conclude that it is possible to use 

macromodels as a basis for automation; however, using a general model finder such as 

Kodkod to do it is impractical. 

 

Finally, although the claim that expressing modeler intent supports model evolution via 

top-down modeling seems reasonable, we were not able to evaluate this as part of the 

Table 10.1. Summary of evaluation results (reproduced from Table 8.9). 

 
Finding PUMR UML 

Defects or potential defects 28 28 

Content criteria 42 19 

Relationships 16 0 

Indexed decompositions 6 4 
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thesis work. To do so would require a case study of an actual multi-person modeling 

project in progress in order to observe the effect that modeler intent has on the evolution 

of the models. Unfortunately, due to the complexities of such a study, we were unable to 

include it within the scope of the research in this thesis and we leave it to future work.  

10.4 Future work 

Here we discuss some promising future directions for this work. 

10.4.1 Content and decomposition criteria for other partiality 

relationship types 

In this thesis the notion of content criteria and decomposition criteria was detailed only 

for the submodel partiality relationship. Content criteria based on the submodel 

relationship alone assumes that all views of the base model are at the same level of 

abstraction as the base model. A more general scenario is that different views can 

represent different kinds and levels of abstraction. A decomposition into abstractions 

would be one where the base model is the greatest common refinement of the 

abstractions. As part of future work, content/decomposition criteria for other common 

partiality relationship types could be explored individually or in combination. One 

complexity here is that unlike the submodel type which can be defined in a generic way 

for any model types, abstraction and other partiality relationship types are typically 

model type specific.  
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10.4.2 Automatically inferring modeler intent 

The claim in this thesis is that modeling the role level for a project is a fruitful thing to do 

since it brings value in several ways. However, since the expression of modeler intent 

places an additional burden of effort on the modeler, it may be neglected in the same way 

that other useful information such as software requirements and documentation are often 

neglected. To address this, we suggest that it is useful to consider techniques for 

automatically inferring intent from modeler actions. For example, when a modeler creates 

a set of diagrams, it may be possible to use machine learning methods such as inductive 

logic programming to make a guess at the content criteria of a the diagram by inferring 

the simplest query that would extract the diagram. Another possibility is to automatically 

enumerate the compositions of a fixed set of extractors to find the one that best 

approximates the content of a diagram. These guesses could then be refined with 

interaction from the modeler. Clearly there are many possibilities one could explore in 

this avenue. 

 

10.4.3 A formalized taxonomy of abstract relationship types 

In Chapter 4, we proposed a taxonomy of abstract relationship types. Of these, only the 

detailOf, submodelOf and eq relationship types were formally defined. There are several 

reasons why there is value in completing the formal characterization of the abstract 

relationship types in this taxonomy. First it would provide a well defined standardized 

vocabulary for discussing relationships between models within software engineering. 

Many terms such as “refinement” and “refactoring” representing relationships are in wide 

usage but have meanings that vary significantly across usages. Second, it would provide 
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guidance to researchers who are defining formalizations of the particular concretized 

versions of these relationship types. This may also lead to the discovery of new 

constructable relationships types such as submodelOf. Finally, it would help identify 

errors and gaps in the taxonomy itself.  

10.4.4 Making formal expressions of intent more understandable 

Since expressions of modeler intent are used both for supporting model automation and 

model comprehension, they must satisfy the conflicting requirements of both being 

formal and also being easily understandable by non-technical stakeholders. Although an 

attempt was made to strike a balance between these two objectives, some of the 

approaches described in this thesis, such as for relationship types and content criteria, 

have tended more toward formal expressiveness rather than ease of understanding. Thus, 

further work must be done on finding ways to express formal role constraints in a way 

that can be readily understood by model consumers. 

10.4.5 A case study for model evolution 

As discussed above and in Chapter 8, the claim that modeler intent could be used to 

support model evolution was not assessed in this thesis. In order to do such an assessment  

a case study could be conducted in which a project macromodel is created and maintained 

throughout the lifetime of a modeling project. Such a study could be used to observe how 

effective top-down modeling is in helping to manage the development process by guiding 

the evolution of the models. Furthermore it could be used to evaluate the effectiveness of 

the different ways in which the role constraints could be used to control model content.    
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10.4.6 Additional evaluation studies 

We note that while this thesis explores modeler intent in the context of software 

engineering, we expect our techniques to be readily applicable to other contexts in which 

graphical models are used. This includes areas such as business modeling, hardware 

design, etc. Studies must be done to evaluate the approach in these domains. In addition, 

more studies are needed even within software engineering in order to fully understand the 

limitations of our assumptions. For example, in Chapter 5 we discussed the fact that our 

approach to content criteria assumes that a global base model can exist and that this 

assumption may not be valid in contexts such as requirements gathering. Additional 

studies will help uncover other such issues and may point to ways to further generalize 

our approach. 
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Appendix A  

Supplementary information for the 

UML example 

A.1 Extractors  

The definitions in this section are based on the EMOF metamodel defined in Section C.1.  

Generic extractors 

These extractors are applicable to any EMOF model.  

classesInPkg(m:EMOF, m1:Set[Package]):Set[Class] := [ 

            // the classes of m that occur in the packages of m1 

 precondition := m1 ⊆ m, 

            QClass(c) := ∃p:m1.Package · m.package(c, p) 

] 

 

classSubsOf(m:EMOF, m1:Set[Class]):Set[Class] := [ 

 // expand m1 to include all direct or indirect subclasses of m1  

precondition:= m1 ⊆ m, 

 QClass(c) := (∃c1:m1.Class · TC(m.superClass(c, c1)) 

] 

 

expandClasses(m:EMOF, m1:Set[Class]):MOF := [ 

 // expand classes in m1 to include their attributes, navigable associations  

  // and superclasses 

precondition:= m1 ⊆ m, 

 QProperty(p) := ∃c:m1.Class · m.ownedAttribute(c, p), 

 QClass(c) := (c ∈ m1.Class) % (∃p:m.Property · Qproperty(p) � m.type(p, c) ) 
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                        %  (∃c1:m1.Class · m.superClass(c1, c), 

 QDatatype(d) :=  ∃p:m.Property · Qproperty(p) � m.type(p, d),    

 QEnumerationLiteral(l) :=  ∃e:m.Enumeration · Qdatatype(e) � m.ownedLiteral(d, e),         

QownedAttribute(c, p) := TRUE, 

QsuperClass(c1, c2) := TRUE, 

Qtype(p, t) := TRUE, 

QownedLiteral(d, l) := TRUE, 

] 

 

// gets the classes for the class types in m1 – this is the same as classSubsOf  

classType(m:EMOF, m1:Set[Class]):Set[Class] = classSubsOf(m, m1) 

 

partOf(m:MOF, C1:Class, C2:Class):Boolean := [ 

  // determine if C1 is a part of C2 in m 

precondition := C1, C2 ∈ m.class, 

partOf  := ∃p:Property · m.ownedAttribute(C2, p) � 

m.type(p, C1) �  

m.isComposite(p, TRUE) 

] 

 

 

ActionMeta-specific extractors 

These extractors are based on specific knowledge about ActionMeta.  

 

supportingClasses(m:EMOF, ac:Set[Class]):Set[Class] := [ 

 // gets the supporting classes for action classes in AC 

precondition := ac ⊆ m 

QClass(c) :=  

(∃c1: ac.Class · name(c1, “Action”) � 

 c ∈ classSubsOf(m, {Pin}) � 

(∃c1: ac.Class · name(c1, “Link”) � 
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 c ∈ classSubsOf(m, {LinkEndData, QualifierValue}) � 

(∃c1: ac.Class · ¬(name(c1, “Action”) % name(c1, “Link”) ) � 

   //  c must be a “base” part of some c1 ∈ ac 

   // i.e., c must be a part of c1 and not a part of any superclass of c1  

partOf(c, c1) � 

 ¬∃c2:m.class · TC(superClass(c, c2)) � partOf(c1, c2)) 

] 

 

ActionClasses := subsOf(m, model(Set[Class], class = {Action})) 

Index Sets  

// Presentation ActionTypes and the coverage criteria for its constituents 

// theModel is taken to be ActionMeta 

ActionTypes = { 

action:Set[Class].cc = id(model(Set[Class], class = {Action, Opaque})) 

 

object:Set[Class].cc = classSubsOf( 

Class({CreateObjectAction,   DestroyObjectAction, TestIdentityAction, 

ReadSelfAction, ReadExtentAction, ReclassifyObjectAction, 

ReadIsClassifiedObjectAction, StartClassifierBehaviorAction})), 

 

link:Set[Class].cc = classSubsOf( 

Class({LinkAction, ClearAssociationAction, ReadLinkObjectEndAction, 

ReadLinkObjectEndQualifierAction})), 

 

acceptEvent:Set[Class].cc = classSubsOf( 

Class({AcceptEventAction, ReplyAction, UnmarshallAction })), 

 

invocation:Set[Class].cc = classSubsOf( 
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Class({InvocationAction})), 

 

structuralFeature:Set[Class].cc = classSubsOf(m, 

Class({StructuralFeatureAction})), 

 

variable:Set[Class].cc = classSubsOf(m, 

Class({VariableAction})), 

 

raiseException:Set[Class].cc = classSubsOf(m, 

Class({RaiseExceptionAction})), 

 

misc:Set[Class].cc = classSubsOf(m, 

Class({ValueSpecificationAction})),  

 

 } 

 

// Presentation OperTypes and the coverage criteria for its constituents 

// theModel is taken to be ActionMeta 

 

OperTypes =  { 

 

base:Set[Class].cc = id(  

Class({StructuralFeatureAction, LinkAction, VariableAction })), 

 

read:Set[Class].cc = classSubsOf(  

Class({TestIdentityAction, ReadSelfAction, 

ReadExtentAction,ReadIsClassifiedObjectAction, 
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ReadStructuralFeatureAction, ReadLinkAction, 

ReadLinkObjectEndAction, ReadLinkObjectEndQualifierAction, 

ReadVariableAction})), 

 

write:Set[Class].cc = classSubsOf(  

Class({CreateObjectAction, DestroyObjectAction,  

ReclassifyObjectAction, StartClassifierBehaviorAction,  

ClearAssociationAction, WriteLinkAction, WriteVariableAction, 

ClearVariableAction })) 

 } 

A.2 List of defects for UML example 

• Naming inconsistencies 

o The information about the package is incorporated into the diagram name 

in different ways at different places.  

� In the BasicActions package, the word “Basic” prefixes we name. 

� In the IntermediateActions package, the word “Intermediate” 

prefixes any name where the diagram has the same action type as 

in BasicActions 

� In the CompleteActions package, the string “(CompleteActions)” 

is used as a suffix on any diagram that has an action type the same 

as in IntermediateActions or BasicActions. However, even this 

scheme is used inconsistently since M17 uses the suffix but does 

not occur in either of the two packages. 
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� In the StructuredActions package, the scheme is not followed: M20 

has action type Action and this occurs in BasicActions.  

o The information about the action type is incorporated into the diagram 

name in different ways at different places. 

� The general scheme of the string “actionType actions” as part of 

the name is used consistently with the following exceptions: 

• M17 says “ReduceAction” instead of “Reduce actions” 

• In cases where the diagram associated with an action type 

is decomposed further some deviations occur because the 

action type is associated with the group and the diagrams 

within it are decomposed based on a different principle of 

division. For example, the action type “Action” is 

decomposed further on the basis of class type and so we get 

diagram M3 with the name “M3 – Basic pins” that gives no 

indication of the action type. This is a naming 

inconsistency due to an implicit group. 

• Naming inaccuracies 

o Diagrams M8 and M14 both contain the string “Link identification” to 

indicate the type of entity operation however this is inconsistent with the 

manner in which the diagram is constructed – it is a detailing of the class 

LinkAction. 

• Inclusion 

o Diagrams M3 and M10 
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• Weak modeling 

o EntOper (6 diagrams affected) 

• Unmodeled information 

o ActionTypes: Object, Link, Misc and AcceptEvent (6 diagrams affected) 

• Potential incompleteness (due to diagram structure constraints) 

o possibly missing diagrams due to empty indices 

� ActionType: Basic (8) (0 – real), Intermediate (5) (1 – real), 

Complete (6) (4 – real), Structured (7) (1 - real) 

• this may be misleading since we really only incrementally 

introduce new action types so we only expect to add to 

action types that occurred in earlier packages. 

� ClassType 

• The action type “Action” in BasicActions (2) (0 – real) 

• The action type “Action” in StructuredActions (3) (1 – real) 

• This may be misleading since not all class types are 

applicable to action type Action 
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Appendix B  

Supplementary information for the 

PUMR example 

The definitions in this section are based on the diagram type metamodels for UML2.2 

defined in Appendix C. For additional elements that are not mentioned in these 

metamodels, please refer to the UML specification [UML2]. 

B.1 Generic constructed extractors 

type(M:UML, S:One[String]):One[type] := [ 

// extract the type element with name S  

precondition := ∃x:M.type · M.name(x) = s, 

Qtype(k) := k = x 

] 

 

typeSet(M:UML, S:Set[String]):Set[type] := [ 

// extract the type set model with names in S 

precondition := ∀s:S ∃c:M.type · M.name(c) = s, 

Qtype(k) := ∃s:S · M.name(k) = s 

] 

 

Examples: 

ClassSet(M:UML, S:Set[String]):Set[Class] := [ 

// extract the Class set model with names in S 

precondition := ∀s:S ∃c:M.Class · M.name(c) = s, 
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QClass (k) := ∃s:S · M.name(k) = s 

] 

 

Interaction(M:UML, S:One[String]):One[Interaction] := [ 

// extract the Interaction with name S  

precondition := ∃x:M.Interaction · M.name(x) = s, 

QInteraction(k) := k = x 

] 

 

 

B.2 Generic extractors 

 

CDof(M:UML, K:Set[Class]):CD := [ 

// Extracts the CD surrounding the classes in K 

precondition := submodelOf(K, M), 

QAssociation(x) =  

QClass(x) = ∃k:K.Class · (k = x) ∨ 

                      ∃a:M.Association, e1, e2:M.Property ·  

                          memberEnd(e1, a, 1) ∧ type(e1) = k ∧ 

                          memberEnd(e2, a, 2) ∧ type(e2) = x ∧                 

 

 

SDof(M:UML, K:One[Interaction]):SD := [ 

// Extracts the SD that contains the full content of interaction K 

precondition := submodelOf(K, M), 

QInteraction(x) := ∃k : K.Interaction ·  k  = x, 

QLifeline(x) := ∃k : K.Interaction ·  k  = M.interaction(x), 

QMessage(x) := ∃k : K.Interaction ·  k  = M.interaction(x), 

QInteractionFragment(x) := ∃k : K.Interaction · k = M.enclosingInteraction(x), 

QGeneralOrdering(x) := ∃x1: M.InteractionFragment · QInteractionFragment(x1) ∧  

                                                                                 generalOrdering(x1, x), 
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… and so on tracing elements to K for all sorts in SD 

] 

 

withStereotype(M:UML, M1:Set[String]):Set[Class] := [ 

// extract classes from M with stereotypes in set M1  

precondition:= TRUE, 

QClass(c) := ∃s:M1.String · M.name(stereotype(c)) = s 

] 

 

UCDof(M:UML, M1:Set[Usecase]):UCD := [ 

 // Extracts the UCD that shows all the relationships that the usecases in M1 participate in 

 precondition := submodelOf(M1, M), 

            QUsecase(u) := (∃x:M.Extend · QExtend(x) ∧ u = extendedCase(x)) ∨ 

                   (∃x:M.Include · QInclude(x)  ∧ u = includedCase(x)) ∨ 

                              (∃x: u1:M1.Usecase · u = u1), 

 QExtend(x) :=  ∃u1:M1.Usecase · extension(x, u1), 

 QInclude(x) :=  ∃u1:M1.Usecase · addition(x, u1), 

 QActor(a) := ∃u1:M1.Usecase · ownedUseCase(u1, a) 

] 

 

ADof(M:UML, K:One[Activity]): AD := [ 

 // Extracts the AD that contains the full content of activity K 

 precondition := submodelOf(K, M), 

 QActivity(a) := ∃a1:K.Activity · a = a1, 

 QActivityNode(a) := ∃a1:K.Activity · M.containedNode(a, a1), 

 QActivityEdge(e) := ∃a1:K.Activity · e = M.containedEdge(e, a1), 

 QActivityGroup(g) := ∃a1:K.Activity · g = M.subGroup(g, a1), 

 

… and so on tracing elements to K for all sorts in AD 

 

] 

 

SMDof(M:UML, K:One[Statemachine]):SMD := [ 
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 // Extracts the SMD that contains the full content of statemachine K 

precondition := submodelOf(K, M), 

QStatemachine(x) := ∃k : K.Statemachine ·  k  = x, 

QRegion(x) := ∃k : K.Statemachine ·  k  = M.statemachine(x), 

QVertex(x) := ∃k : K.Statemachine ·  k  = M.statemachine(x), 

… and so on tracing elements to K for all sorts in SMD 

  

] 

 

SMDofState(M:UML, K:One[State]):SMD := [ 

 // Extracts the SMD that contains the full content of state K 

 precondition := submodelOf(K, M), 

 in(x, k) := DEFINED(M.state(M.container(x))) ∧  k = M.state(M.container(x)) 

QState(x) := (∃k : K.State ·  k  = x) ∨ TC(in(x, k)), 

QRegion(x) := ∃k : K.State · DEFINED(M.state(x)) ∧ k  = M.state(x), 

 

… and so on tracing elements to K for all sorts in SMD 

] 

 

DirectPartsOf(M:UML, K:Set[Class]):CD := [ 

// Extracts the CD consisting of the classes K and all their direct aggregated classes 

precondition:= submodelOf(K, M), 

QAssociation(a) := ∃c1:K.Class, p1:M.Property ·  

                               M.memberEnd(p1, a, 1) ∧ c1 = M.type(p1) ∧ 

                               ¬(M.aggregation(p1) = none) 

QClass(c) := (∃c1:K.Class · (c = c1) ∨  

                       ∃a:M.Association, p:M.Property · QAssociation(a) ∧  

                            M.memberEnd(p, a, 2) ∧ c = M.type(p)), 

QProperty(a) := ∃c1:M.Class · QClass(c1) ∧ ownedAttribute(a, c1) 

] 

 

DirectSubsOf(M:UML, K:Set[Class]):CD := [ 

             // Extracts the CD consisting of the classes K and all their direct subclasses and   
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// attributes 

precondition:= submodelOf(K, M), 

QClass(c) := (∃c1:K.Class · (c = c1) ∨ M.general(c, c1)), 

QProperty(a) := ∃c1:M.Class · QClass(c1) ∧ ownedAttribute(a, c1) 

] 

 

DirectSupersOf(M:UML, K:Set[Class]):CD := [ 

 // Extracts the CD consisting of the classes K and all their direct superclasses and   

             //  attributes 

precondition:= submodelOf(K, M), 

QClass(c) := (∃c1:K.Class · (c = c1) ∨ M.general(c1, c)), 

QProperty(a) := ∃c1:M.Class · QClass(c1) ∧ ownedAttribute(a, c1) 

 

] 

 

TypeSpec(M:UML, K:Set[Class]):CD := [ 

// Extracts the subclasses and aggregated classes of the classes in M1 

precondition:= submodelOf(K, M), 

partOf(c, c1) := ∃a:M.Association, p, p1:M.Property ·  

                                                         M.memberEnd(p, a, 2) ∧ c = M.type(p) ∧ 

                                                         M.memberEnd(p1, a, 1) ∧ c1 = M.type(p1) ∧ 

                                                         ¬M.aggregation(p1) = none,     

QClass(c) := (∃c1:K.Class · TC(general(c, c1)) ∨ TC(partOf(c, c1))) 

QProperty(a) := TRUE 

] 

 

ActivityForUsecase(M:UML, U:One[Usecase]): One[Activity] := [ 

// Extracts the activity owned by the use case U  

precondition := u ∈ m ∧ ∃a:m.Activity · m.context(a, u) 

 

Q := a  

] 

 

MessagesForTask(M:UML, T:One[String]):Set[Class] := [ 
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             // Extracts the set of message classes that relate to task T   

] 

  

InteractionsForTask(M:UML, T:One[String]):Set[Interaction] := [ 

            // Extracts the set of interactions that relate to task T 

] 

 

UsecasesForTask(M:UML, T:One[String]): Set[Usecase] := [ 

             // Extracts the set of use cases that relate to task T 

… 

] 

 

 

StateMachineForClass(M:UML, K:One[Class]):One[Statemachine] := [ 

             // Extracts the statemachine owned by class K 

            precondition:= submodelOf(K, M), 

              QStatemachine(x) := ∃k:K.Class · x = classifierBehavior(k) 

  

] 

 

SubsOf(M:UML, M1:Set[Class]):CD := [ 

// expand m1 to include all direct or indirect subclasses of m1  

precondition:= m1 ⊆ m, 

QClass(c) := (∃c1:m1.Class · TC(superClass(c, c1)), 

QProperty(a) := TRUE 

] 

 

B.3 Diagram content criteria 

40 - Context model packages : PD 

CCM40 := Proj(ContextModel, PD) 

 

41 - Simple PUMR Domain Model : CD 

             CCM41 := DirectPartsOf(ContextModel, ClassSet(ContextModel, {“PISN”})) 
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42 – Sequence diagram indicating the flow of information between the user and the PISN 

: SD 

CCM42 := SDof(ContextModel,  

Interaction(ContextModel,  

“Flow of information between the user and the PISN”) 

 

43 - PUMR system architecture : OD 

CCM43 is unclear 

44 - PUM Registration use case diagram: UCD 

CCM44 := UCDof(ReqModel,  

UsecasesForTask(ReqModel, “Registration”), UCD) 

 

45 - Activity diagram describing the "Register PUM User at Terminal for Outgoing 

Calls" use case : AD 

CCM45 := ADof(ReqModel, ActivityForUsecase(ReqModel,  

        Usecase(ReqModel, “Register PUM user at Terminal for Outgoing Calls”))) 

 

46 - Activity diagram describing the "Specify Access for Incoming Calls" use case : AD 

CCM46 := ADof(ReqModel, ActivityForUsecase(ReqModel,  

        Usecase(ReqModel, “Specify Access for Incoming Calls”))) 

 

47 - Activity diagram describing the "Specify Profile" use case: AD 

CCM47 := ADof(ReqModel, ActivityForUsecase(ReqModel,  

        Usecase(ReqModel, “Specify Profile”))) 

 

48 - PUM De-registration use case diagram: UCD 

CCM48 := UCDof(ReqModel,  

         UsecasesForTask (ReqModel, “De-Registration”), UCD) 

 

49 - Activity diagram describing the "De-register from current location" use case: AD 

CCM49 := ADof(ReqModel, ActivityForUsecase(ReqModel,  

          Usecase(ReqModel, “Deregister from current location”))) 
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50 - Specification model packages : PD 

CCM50 is unclear – some submodel of Proj(SpecModel, PD) 

 

51 - Basic Domain Model (from Context Model): CD 

CCM51 := DirectPartsOf(SpecModel, ClassSet(SpecModel, {“PISN”})) 

 

 

52 - PUMR Object Model : OD 

CCM52 := objectsOf(SpecModel, M54) + objectsOf(SpecModel, M55) 

 

53 - Example sequence diagram showing registration using the PUM Number: SD 

CCM53 := SDof(SpecModel,  

         Interaction(SpecModel, “Registration using the PUM Number”)) 

 

54 - Example sequence diagram showing registration using Alternative Identifier: SD 

CCM54 := SDof(SpecModel,  

        Interaction(SpecModel, “Registration using Alternative Identifier”)) 

 

55 - Example sequence diagram showing de-registration: SD 

CCM55 := SDof(SpecModel, Interaction(SpecModel, “De-Registration”)) 

 

56 - Example sequence diagram showing PUMR interrogation: SD 

CCM56 := SDof(SpecModel, Interaction(SpecModel, “PUMR Interrogation”)) 

 

57- PUMR Detailed Domain Model : CD 

CCM57 := [ 

              // Expand class PINX to containing classes, their attributes 

                   and methods, their interfaces and attributes and methods 

 

    precondition := ∃c:SpecModel.Class · SpecModel.name(c) = “PINX”, 

    partOf(c, c1) := ∃a: SpecModel.Association, p, p1: SpecModel.Property ·  

                                   SpecModel.memberEnd(p, a, 2) ∧ c = SpecModel.type(p) ∧ 

                                   SpecModel.memberEnd(p1, a, 1) ∧ c1 = SpecModel.type(p1) ∧ 
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                                   ¬SpecModel.aggregation(p1) = none, 

    Qclass(x) := (x = c) ∨ partOf(x, c), 

    QInterface(x) := ∃r:InterfaceRealization ·  

                             SpecModel.implementingClassifier(r) = c ∧ 

                          SpecModel.contract(r) = x 

    Qattribute(x) := (∃c1:SpecModel.Class · ownedAttribute(x, c1) ∧ Qclass(c1)) ∨ 

                         (∃c1:SpecModel.Interface · ownedAttribute(x, c1) ∧ QInterface(c1)), 

    Qoperation(x) := (∃c1:SpecModel.Class · ownedOperation(x, c1) ∧ Qclass(c1)) ∨ 

                           (∃c1:SpecModel.Interface · ownedOperation(x, c1) ∧ QInterface(c1)), 

] 

 

 

RegProc : SMD 

CCRegProc := SMDof(SpecModel,  

            StateMachineForClass(SpecModel, Class(SpecModel, “Home PINX”))) 

 

58 - Statechart diagram showing the registration processing at the Home PINX: SMD 

CCM58 := RegProc – M59 

 

59 - Statechart sub-diagram showing the detailed processing of a registration request at 

the Home PINX: SMD 

CCM59 := SMDofState(RegProc, State(SpecModel, “RegistrationRequest”)) 

 

60 - PUMR message-specific packages : PD 

CCM60 := [ 

    precondition := TRUE, 

    QPackage(x) = … // unmodeled condition for PUMR message-specific packages 

] 

 

61 - Identification of PUMR signaling at QSIG interfaces : CD 

CCM61 is unclear 

 

62 - Identification of the two QSIG signals used for carrying PUMR message info : CD 
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// communication message classes of QSIG that are extended by PUMR classes 

CCM62 := [ 

   precondition := ∃qsig, pumr:SpecModel.Package ·  

                                SpecModel.name(qsig) = “QSIG” ∧                                                                  

                                SpecModel.name(pumr) = “PUMR”     

    QClass(c) := ∃c1: SpecModel.Class, p, p1: SpecModel.Package ·   

                           TC(SpecModel.ownedMember(p, qsig)) ∧  

                             SpecModel.ownedMember(c, p) ∧   

                             TC(SpecModel.ownedMember(p1, pumr)) ∧  

                              SpecModel.ownedMember(c1, p1) ∧   

                              TC(SpecModel.general(c1, c)) ∧ 

                              SpecModel.name(stereotype(c)) = “communication message”) 

                  

] 

 

Messages1 : CD 

CCMessages1 := [ 

    precondition := TRUE, 

   QClass(c) := SpecModel.name(stereotype(c)) = “communication message”, 

   QAttribute(x) := ∃c:SpecModel.Class · ownedAttribute(x, c) ∧ QClass(c) 

] 

 

63 - PUMR message contents carried in the SETUP signal : CD 

CCM63 := DirectSubsOf(SpecModel, ClassSet(SpecModel, {“PUM_SETUP”})) +  

  DirectSupersOf(SpecModel, ClassSet(SpecModel, {“PUM_SETUP”})) 

 

64 - PUMR message types carried in the CONNECT signal : CD 

CCM64 := DirectSubsOf(SpecModel, ClassSet(SpecModel, {“PUM_CONNECT”}))  + 

               DirectSupersOf(SpecModel, ClassSet(SpecModel, {“PUM_SETUP”})) 

 

65 - Contents of PUMR response messages : CD 

CCM65 := DirectSubsOf(SpecModel, ClassSet(SpecModel, {“Response”})) 
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66 - Contents of PUMR error messages : CD 

CCM66 := DirectSubsOf(SpecModel, ClassSet(SpecModel, {“Errors”})) 

 

67 - PUMR registration message types : CD 

CCM67 := MessagesForTask(SpecModel, “Registration”) 

 

68 - PUMR de-registration message types : CD 

CCM68 := MessagesForTask(SpecModel, “De-Registration”) 

 

69 - PUMR delete registration message types : CD 

CCM69 := MessagesForTask(SpecModel, “Delete”) 

 

70 - PUMR interrogation message types : CD 

CCM70 := MessagesForTask(SpecModel, “Interrogation”) 

 

71 - PISN enquiry message types : CD 

CCM71 := MessagesForTask(SpecModel, “Enquiry”) 

 

72 - PUMR general data types : CD 

CCM72 := TypeSpec(SpecModel,  

      ClassSet(SpecModel, {“ServiceOption”, “SessionParams”,  “DummyRes”})) 

 

ErrorCodes : CD 

// all enums that in a PUMR package that has name ending with “Errors” 

CCErrorCodes := [ 

precondition := ∃pumr:SpecModel.Package · SpecModel.name(pumr) = “PUMR” ,                                                         

             QClass(c) := ∃p: SpecModel.Package, s1, s2: SpecModel.String ·  

                                    TC(SpecModel.ownedMember(p, pumr)) ∧  

                       SpecModel. ownedMember(c, p) ∧   

                       SpecModel.name(stereotype(c)) = “enumeration” ∧ 

                       SpecModel.name(c) = s1) ∧  

                        s1 = s2 + “Errors”, 
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QProperty(p) := TRUE  

 ] 

 

 

73 - PUMR error codes : CD 

// all enums that in a PUMR package that has name ending with “Errors” 

CCM73 := TypeSpec(SpecModel, ErrorCodes) 

 

74 - Type specification of PUM user PIN : CD 

CCM74 := TypeSpec(SpecModel, ClassSet(SpecModel, {“PUM user PIN”})) 

 

75 - Type specification of PUM user identifier : CD 

CCM75 := TypeSpec(SpecModel,  

      ClassSet(SpecModel, {“PUM user identifier”})) 

 

76 - Type specification of PUMR message extension : CD 

CCM76 := TypeSpec(SpecModel,  

      ClassSet(SpecModel, {“PUMR message extension”})) 

 

77 - QSIG message packages not specific to PUMR : PD 

CCM77 := [ 

    precondition := TRUE, 

    QPackage(x) = … // unmodeled condition for QSIG message-specific packages 

] 

 

78 - QSIG basic service messages : CD 

// communication messages in QSIG package 

CCM78 := [ 

   precondition := ∃qsig:SpecModel.Package · SpecModel.name(qsig) = “QSIG”,                                                            

   QClass(c) := ∃p: SpecModel.Package · TC(SpecModel.ownedMember(p, qsig)) ∧  

                          SpecModel.ownedMember(c, p) ∧   

                          SpecModel.name(stereotype(c)) = “communication message”, 

    QProperty(p) := TRUE  

    ] 
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79 - QSIG general data types : CD 

CCM79 := TypeSpec(SpecModel,  

       ClassSet(SpecModel, {“Basic Service”, “CharString20”})) 

 

80 - Type specification of QSIG party number : CD 

CCM80 := TypeSpec(SpecModel,  

      ClassSet(SpecModel, {“QSIG party number”})) 

 

81 - Type specification of QSIG digit string : CD 

CCM81 := TypeSpec(SpecModel, ClassSet(SpecModel, {“QSIG digit string”})) 

B.4 Relationship type definitions used in PUMR 

instanceOf(OD, CD) 

instanceOf(Inst:OD,Type:CD) =   Inst.OD + Type.CD + 

        subsort  Inst.Class ≤ Type.Class 

                       Inst.Association ≤ Type.Association  

        constraints 

            // all objects (ConnectableElement) and links (Connector) in Inst must have types 

    ∀x:Inst.Connector · DEFINED(Inst.type(x)) 

    ∀x:Inst.ConnectorElement · DEFINED(Inst.type(x))                 

 

            // link (connector) endpoints conform to association endpoint types  at the same index 

    ∀x:Inst.Connector ∃a:Inst.Association ·  

         a = Inst.type(x) ∧                     

         ∀e:Inst.ConnectorEnd, i :INT ·  Inst.end(x, e, i) ⇒   

              ∃p:Type.Property · Type.memberEnd(a, p, i) ∧ 

                   Inst.type(Inst.role(e)) = Type.type(p) 

            // minimality: Type only contains Classes and Assocs corresponding to Inst 

                 ∀x:Type.Class ∃y:Inst.ConnectableElement · x = Inst.type(y) 

                 ∀x:Type.Association ∃y:Inst.Connector · x = Inst.type(y)                 
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objectsOf(SD, OD) 

Note that this version of objectsOf introduced in Chapter 4 is adapted to the UML 2.2 

abstract syntax. The sentOver function is replaced by the connector function which exists 

with the UML 2.2. metamodel. 

objectsOf(theSD:SD,theOD:OD) =   theSD.SD + theOD.OD + 

        subsort  theSD.ConnectableElement ≤ theOD.ConnectableElement 

        func connector: theSD.Message → theOD.Connector                         

        constraints 

            // all Lifelines in theSD must have an ConnectableElement 

    ∀x:theSD.Lifeline · DEFINED(theSD.represents(x)) 

            // connector preserves endpoint incidence 

    ∀x:theSD.Message ∃source, target:theOD.ConnectorEnd ·  

        theOD.end(source, connector(x), 1)  ∧  

        theSD.represents(theSD.covered(theSD.sendEvent(x))) = theOD.role(source) ∧ 

        theOD.end(target, connector(x), 2)  ∧       

        theSD.represents(theSD.covered(theSD.eceiveEvent(x))) = theSD.role(target) 

     

            // minimality: theOD only contains Connectors and ConnectableElements corresponding  

               to theSD 

                 ∀x:theOD.ConnectableElement ∃y:theSD.Lifeline · x = theSD.represents(y) 

                 ∀x:theOD.Connector ∃y:theSD.Message· x = connector(y) 

 



www.manaraa.com

316 

 

caseOf(SD, SD) 

Here, the skeleton of the relationship type is defined but the details of the constraints (i.e., 

“additional constraints”) that define this as an SD specialization relationship are not 

developed as this is beyond the scope of this thesis. 

caseOf(Spec:SD,Gen:SD) =   Spec.SD + Gen.SD + 

        func  map: Spec.Lifeline → Gen.Lifeline 

                  map: Spec.Message → Gen.Message 

        constraints 

            // map preserves endpoint incidence 

    ∀x: Spec.Message ·  

                  Gen.covered(Gen.sendEvent(map(x))) =  

                       map(Spec.covered(Spec.sendEvent(x))) ∧ 

                   Gen.covered(Gen.receiveEvent(map(x))) =  

                       map(Spec.covered(Spec.receiveEvent(x))) ∧   

            // minimality: Gen only contains Lifelines and Messages corresponding to Spec 

                 ∀x: Gen.Lifeline ∃y:Spec.Lifeline · x = map(y) 

                 ∀x: Gen.Message ∃y:Spec.Message · x = map(y)   

            // other constraints that define an SD specialization 

                 additional constraints               

 

aggregationOf(OD, OD) 

instanceOf(Agg:OD, Det:OD) =   Agg.OD + Det.OD + OD + 

        sort Property, AggregationKind         

        func none: AggregationKind, composite: AggregationKind, shared: AggregationKind      

        pred aggregates:ConnectableElement × ConnectableElement 

                 aggregation:Property → AggregationKind 

        constraints 

            // Agg and Det are both submodels of OD 

            submodelOf(Agg.OD, OD) 

            submodelOf(Det.OD, OD) 
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            // helper predicate ‘aggregates(x, y)’ says that x has an aggregation link to y 

            ∀x, y: ConnectableElement · aggregates(x, y) � 

                ∃z: Connector, ex, ey:ConnectorEnd, w:Property ·  

                    x = role(ex) ∧ y = role(ey) ∧  

                    end(ex, z, 1) ∧ end(ey, z, 2) ∧ 

                    memberEnd(w, type(z), 1) ∧  

                    ¬(aggregation(w) = none)        

            // there must be a chain of aggregation Connectors from each ConnectableElement 

            // in Det and one in Agg 

                 ∀x:Agg.ConnectableElement ∃y:Det.ConnectableElement · TC(aggregates(x, y)) 

  

 

B.5 List of defects for the PUMR example 

Naming inconsistencies 

• “41 - Simple PUMR Domain Model” and “51- Basic domain model (from 

Context Model)” have the same CC but are named differently 

• “43 - PUMR system architecture” and “52 - PUMR Object Model” have the same 

CC but are named differently 

• There are two groups of diagrams that show the details for various data types. 

When the diagram shows this for a single type T  it is named “Type specification 

of T” however when it shows it for a group types there is no fixed convention: “73 

– PUMR error codes”,“72 - PUMR general data types” and “79 - QSIG general 

data types.” Since these all represent the same intent (TypeSpecification) with 

different generators we might expect a more standardized form, e.g.,: “73 – Type 

specification of PUMR error codes”,“72 – Type specification of PUMR general 

data types” and “79 – Type specification of QSIG general data types.” 
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Naming inaccuracies 

• “50 - Specification model packages” suggests the CC Proj(SpecModel, PD) as is 

the case with “40 - Context model packages” but it is actually a subset of the 

packages  

• “58 – Statechart diagram showing the registration processing at the Home PINX” 

only contains part of the state machine diagram for registration processing. This is 

actually decomposed over diagrams 58 and 59. However, because there is no 

means for referring to the unrealized combined diagram that would correspond to 

the statemachine element, it is attached to the “top” model in a (detailOf) 

hierarchical decomposition. 

• “62 - Identification of the two QSIG signals used for carrying PUMR message 

info”  

o Furthermore, I have generalized this to “the QSIG signals …” but maybe 

this is my error. The alternative is incompleteness. 

Content exclusions 

• 66 is missing PumInterrogErr 

• 65 is missing PumDelRegRes 

o  

Weakly modeled information 

• partial weak modeling of the concept of a “normative interface” since normative 

interfaces are identified either by a stereotype or by a comment in diagram 61 
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• in diagram 73, a class is identified as being an “error code” by using the naming 

convention that it has “Errors” as a suffix. 

• for diagrams 67-71, to identify the task associated with a message class using, 

MessagesForTask is implemented using a naming convention that  the class name 

has prefix “PumRegistr”, “PumDereg”, “PumInterrog”, “PumDelReg” and 

“PisnEnq” for tasks “Registration”, “Deregistration”, Interrogation”, 

“DeleteRegistration” and “Enquiry”, respectively. 

• For diagrams 63-66, in order to identify whether a message class is an argument, 

response or error, the naming convention is used that the class name has the suffix 

“Arg”, “Res” or “Err”, respectively. However, in this case it is not necessary to 

rely on this informal source of information since the type can also be identified by 

base classes “PUM_SETUP”, “Response” and “Errors.” Thus this is a case of 

unnecessary redundancy of information. 

 

Unmodeled information 

• UsecasesForTask (44, 48) 

• InteractionForTask 

• in diagram 60, it is not evident how to determine whether a PUMR package is 

message specific 

• in diagram 50, it is not evident how the subset of specification model packages in 

this diagram is determined 

• in diagram 77, it is not evident how to determine which QSIG message packages 

are not specific to PUMR 
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Potential incompleteness 

• There is no architecture corresponding to 56 

o this is an incompleteness defect 

• There are no interactions corresponding to tasks DeleteRegistration and Enquiry 

• There are is no use case diagram or activity diagrams corresponding to tasks 

Interrogation, DeleteRegistration or Enquiry 

• There are four use cases in 44 and only three activity diagrams are shown 

this is an example of incompleteness detection but also an exclusion defect in the 

Registration : ReqUnitT group. 



www.manaraa.com

321 

Appendix C  

Metamodels 

The metamodels in this section are all expressed graphically as EMOF models [MOF06]. 

These are excerpts from specifications and are intended for use in the definitions of the 

extractors and relationship types in the examples. Note that not all the constraints defined 

in the specifications are shown here for these metamodels. We assume these metamodels 

are to FO+ as follows with examples shown from the EMOF metamodel (Section C.1): 

o Each element class becomes a sort and the subclass relationship between element 

classes becomes a subsort relationship 

o e.g., we have sorts: Enumeration, Datatype, EnumerationLiteral, etc. with 

Enumeration ≤ Datatype  

o Each association end with a multiplicity of 1 becomes a function and with 

multiplicity 0..1, a partial function, having one argument, named by the role name 

of the end and with result type given by the end class. 

o e.g., we have partial functions: 

� class:Property o→ Class 

� package:Type o→ Package 

o Each association end with a multiplicity of k..* becomes a binary predicate  

named by the role name of the end and with end are the second argument. In the 

case of a multiplicity of k..* with k > 0, a corresponding constraint is added. If the 

end is ordered, then the predicate has an additional integer argument with the 

order index. 

o e.g., we have predicates: 

� superClass:Class × Class  (with specific class first) 

� ownedAttribute:Class × Property × INT 

� annotatedElement:Comment × NamedElement 

o Each attribute becomes a function with the element class as the first argument.  
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o e.g., we have functions: 

� name:NamedElement → String 

� isReadOnly:Property → Boolean 

 

C.1 EMOF  
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C.2 CD (ClassDiagram) 
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C.3 SD (Sequence Diagram) 
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C.4 OD (Object Diagram) 

Note: we define OD using UML 2.2 ConnectableElements and Connectors rather than 

InstanceSpecifications since this better fits the intended us in PUMR - they used UML 

1.4 which didn’t have these concepts. 

ConnectableElement ConnectorEnd
1 *

+role

Type

TypedElement

0..1
+type

0..1

Connector
*

+end

*1 *

Classifier

Association

0..1 +type0..1

Class

{ordered}
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C.5 SMD (Statemachine Diagram)  
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C.6 UCD (Usecase Diagram) 
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*
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*
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*
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C.7 PD (Package Diagram) 
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C.8 AD (Activity Diagram) 

 

 

ControlNode ControlFlow

FinalNode ForkNode JoinNode MergeNode DecisionNode

ObjectFlow

Behavior
0..10..1

decisionInput

0..1

n

0..1

n

transformation

0..1

n

0..1

n

selection

State

ObjectNode

0..10..1

selection

n

n

+inState

n

n

InitialNode

ActivityParameterNode

FlowFinalNode ActivityFinalNode

Element

ActivityPartition

0..1
+represents

0..1

Constraint

Action

n

+localPrecondition

n

n+localPostconditionn

Activity

ActivityGroup

0..1

n

0..1

n

0..1

n

0..1

+subgroup n

ActivityNode

0..1
n

0..1
n

n
n

+containedNode
n

n

ActivityEdge

0..1

n

0..1

n
n

n

n

+containedEdge

n
*

+source

*

*

+target

*

ValueSpecification

+guard



www.manaraa.com

331 

Appendix D  

Antlr grammar for Kodkod 

D.1 Grammar for Kodkod using railroad diagrams 

start 

 

formula 

 

 

basicFormula 

 

expr 
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basicExpr 

 

varDecl  

 

 

expop 

 

filler 

 

int  
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NEWLINE 

 

 

relConst

 

relVar 

 

ws 

 

comment 

D.2 Listing of grammar source code 

grammar kodkod; 

 

 

@header { 

package mainstuff; 

 

import java.util.HashMap; 

import java.util.Map; 

 

import kodkod.ast.Decl; 
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import kodkod.ast.Expression; 

import kodkod.ast.Formula; 

import kodkod.ast.Variable; 

import kodkod.ast.Relation; 

 

 

 

} 

 

@members { 

/** Map variable name to Integer object holding value */ 

private Map<String, Variable> vars = new HashMap<String, Variable>(); 

public Map<String, Relation> rels = new HashMap<String, Relation>(); 

public String modelTypeName; 

 

    public class RelationNotFoundException extends RecognitionException{ 

     private String relName; 

     

     RelationNotFoundException(String rn) { 

      relName = rn;   

     } 

      

     public String getMessage() { 

      return "No relation found with name " + relName; 

     } 

     

    } 

     

     

    private Relation getRel(String relName) throws 

RelationNotFoundException { 

     if (!relName.contains(new String("!"))) // must be qualified 

      relName = modelTypeName + "!" + relName; 

      

     Relation rel = rels.get(relName); 

     if (rel != null) return rel; 

     

RelationNotFoundException rnfe =   

new RelationNotFoundException(relName); 

     throw rnfe; 

    } 

  

} 

 

 

 

start returns [Formula form] :  

filler {$form = Formula.TRUE;} 

(f=formula  {$form = $form.and($f.form);} ';' filler)* 

EOF; 

 

basicFormula returns [Formula form] : 

  (e1=expr expop e2=expr) {if ($expop.text.equals("in")) 

      $form = $e1.exp.in($e2.exp); 

       else if ($expop.text.equals("=")) 

      $form = $e1.exp.eq($e2.exp); 

       else if ($expop.text.equals("!=")) 
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        $form = $e1.exp.eq($e2.exp).not(); } 

 | 'some' e=expr {$form = $e.exp.some();} 

 | 'one' e=expr {$form = $e.exp.one();} 

 | 'no' e=expr {$form = $e.exp.no();} 

 | 'lone' e=expr {$form = $e.exp.lone();}; 

 

formula returns [Formula form] : 

 (f=basicFormula {$form = $f.form;} 

 | '{' f=formula '}' {$form = $f.form;} 

 | 'not' f=formula {$form = $f.form.not();} 

 | '[' 'all' d=varDecl ']' f=formula {$form = 

$f.form.forAll($d.decl);} 

 | '[' 'some' d=varDecl ']' f=formula {$form = 

$f.form.forSome($d.decl);}) 

 ('and' f=formula {$form = $form.and($f.form);} 

 | 'or' f=formula {$form = $form.or($f.form);} )*; 

 

 

varDecl returns [Decl decl] : 

 v=relVar ':' e=expr { 

  vars.put($v.text, Variable.nary($v.text, $e.exp.arity())); 

  $decl = vars.get($v.text).oneOf($e.exp);}; 

 

expr returns [Expression exp] : 

 r=basicExpr {$exp = $r.exp;}  

 ('+' r=expr {$exp = $exp.union($r.exp);} 

 | '-' r=expr {$exp = $exp.difference($r.exp);} 

 | '.' r=expr {$exp = $exp.join($r.exp);} 

 | '&' r=expr {$exp = $exp.intersection($r.exp);} 

 | '->' r=expr {$exp = $exp.product($r.exp);})*; 

  

basicExpr returns [Expression exp] : 

  relVar {$exp = vars.get($relVar.text);} 

 | relConst {$exp = getRel($relConst.text);} 

 | '~' r=expr {$exp = $r.exp.transpose();} 

 | '^' r=expr {$exp = $r.exp.closure();} 

 | '(' r=expr ')' {$exp = $r.exp;}; 

  

  

filler : NEWLINE? comment*; 

comment : SINGLE_COMMENT; 

relVar : RELVAR; 

relConst: RELCONST; 

expop  : EXPOP; 

                

EXPOP  : 'in' | '=' | '!='; 

RELVAR  : ('a'..'z')('a'..'z' | 'A'..'Z' |'0'..'9')* ; 

INT :   '0'..'9'+ ; 

NEWLINE:('\r'? '\n')+ ; 

SINGLE_COMMENT: '//' ~('\r' | '\n')* NEWLINE { skip(); }; 

 

 

WS  :   (' '|'\t')+ {skip();} ; 

RELCONST: ('A'..'Z')('a'..'z' | 'A'..'Z'| '_' | '!' |'0'..'9')* ; 
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Appendix E  

Supplementary information for the 

transportation example 

E.1 UML model 

Car

Sedan VanPickupHatchback

SUV

FamilyTeam

Vehicle
weight : int

numPassengers : int

TollTicket
authorizes

User
1 1..*1 1..*

carries

buys

Truck
cargo : Ctype

MonthlyTicket

Commercial User
carries

{subsets carries}

buys {subsets buys}

Single Trip Ticket

Non-Commercial User

buys
{subsets buys}

 

E.2 Extractors 

top(M:UML): CD := [   

   // the set of base classes of M   

    precondition := TRUE, 

    QClass(c) :=   ¬∃c1 : M.Class · M.subClassOf(c, c1)  

 ] 

 

relatedTo(M:UML, UType:One[Class]): CD := [   

         // vehicles related to a user type 

         precondition := submodelOf(UType,  M) ∧ 
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                                  ∃veh:M.Class, user:UType.Class, cr:M.Association · 

                              M.name(veh) = “Vehicle” ∧  

                              M.name(user) = “User” ∧  

                                M.name(cr) = “Carries”, 

 

    QClass(c) :=  (c = veh ∨ TC(subClassOf(c, veh))) ∧  

                        (c = startClass(cr) ∨ TC(M.subClassOf(c, startClass(cr)))) ∧  

                         (user = endClass(cr)  ∨ TC(M.subClassOf(user, endClass(cr))) ∧                     

                         ¬∃cr1 : M.Association ·  // no restriction of cr to non-UType 

          M.subsets(cr1, cr) ∧ 

             (startClass(cr1)  = startClass(cr)  ∨  

                                       TC(M.subClassOf(startClass(cr1), startClass(cr)))) ∧  

                                 (user ≠ endClass(cr1) ∧ 

                                   ¬TC(M.subClassOf(user, endClass(cr1)))                                                  

                   

] 

 

classDetails(M:UML, C:One[class]): CD := [   

     precondition := ∃x:C.Class, mc:M.Class · mc = x, 

    QClass(c) :=   (c = mc ∨ TC(M.subClassOf(c, mc) ∨  

                         (∃a:M.Association · M.endClass(a) = c ∧    

                                           M.startClass(a) = mc )), 

     QAssociation(a) := M.startClass(a) = mc, 

     QAttribute(a) := M.attrClass(a) = mc     

] 


